
Reinforcement Learning for Public Health:
Targeted COVID-19 Screening

Hamsa Bastani1[0000−0002−8793−4732], Kimon Drakopoulos2[0000−0001−8288−5874],
and Vishal Gupta2[0000−0003−4371−9114]

1 University of Pennsylvania, Philadelphia PA 19104, USA
hamsab@wharton.upenn.edu

2 University of Southern California, Los Angeles CA 90089, USA
{drakopou,guptavis}@usc.edu

Abstract. Reinforcement learning is a promising solution to sequential
decision-making problems, but its use has largely been limited to simula-
tion environments and e-commerce. This chapter describes a large-scale
deployment of reinforcement learning in Greece during the summer of
2020 to adaptively allocate scarce testing resources to incoming passen-
gers amidst the evolving COVID-19 pandemic. Our system, nicknamed
Eva, used limited demographic information and recent testing results to
guide testing in order to maximize the number of asymptomatic but in-
fected travelers identified over the course of the tourist season. Results
from the field evaluation show a marked improvement over other “open-
loop” testing strategies and highlight some of the challenges of deploying
reinforcement learning in real-world, high-stakes settings.
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This chapter summarizes our deployment of a reinforcement learning algo-
rithm for targeted COVID-19 border testing in Greece; further background and
technical details can be found in our journal articles [1] and [2].3

1 Introduction

In the beginning of 2020, governments around the world scrambled to mount
an emergency response to the COVID-19 pandemic. At the time, vaccines for
SARS-CoV-2 were unavailable and effective medical treatments for COVID-19
were still in development. Testing, contact tracing and social distancing were the
only weapons against the pandemic. Hence, this global response focused on a
largely uncoordinated flurry of lockdowns, enhanced social distancing protocols,
and travel restrictions.
3 Anonymized and deidentified data can be found in https://github.com/kimondr/
EVA_Public_Data; code for our counterfactual analysis can be found in https://
github.com/vgupta1/EvaTargetedCovid19Testing.
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However, as became quickly apparent, these restrictive measures could not
be sustained indefinitely as they effectively halted normal economic activity.
For European countries with significant tourist economies, like Greece, travel
restrictions were especially challenging, with projected losses of $1 trillion USD
and 19 million jobs in the tourist industry alone [3].

Consequently, as the first tourist season of the pandemic approached (summer
of 2020), many countries sought to judiciously relax travel restrictions. Striking
the right balance was crucial. Too loose travel protocols risked admitting asymp-
tomatic or presymptomatic infected travelers who might then spread SARS-CoV-
2 among the local population with devastating consequences. Too strict protocols
would inhibit the desired economic activity.

An ideal solution might have been to actively screen every passenger arriving
at the border for SARS-CoV-2. Positive cases could then be quarantined, pre-
venting them from spreading SARS-CoV-2 to the local population on their visit.
However, in early 2020, testing supply chains across the globe were strained. In-
deed, Polymerase Chain Reaction (PCR) testing requires specialized machinery,
and the backlog on these machines was 3-6 months, precluding rapid capacity
expansion. Although other forms of antigen testing were more readily available,
their accuracy, particularly among asymptomatic/presymptomatic passengers,
was unclear. In summary, we simply could not test everyone. Accurate testing
was a scarce resource that needed to be managed carefully.

Against this backdrop, we partnered with Greece to design and deploy Eva,
a reinforcement learning system that combined passenger demographic informa-
tion with recent testing results from similar passengers to allocate tests at the
Greek border. The key idea was to preferentially test travelers who, based on
recent data, were more likely to test positive. The key challenge was that COVID-
19 prevalence was constantly evolving as the pandemic ebbed and flowed. Risk
across various subpopulations might change substantively over time, with pre-
viously “safe” populations becoming high risk due to a litany of factors such
as eased social distancing or individual behavioral modifications. Hence, any
good testing strategy should be adaptive, reacting to the changing nature of the
pandemic.

The reader might recognize this description as the classic “exploration – ex-
ploitation” tradeoff in sequential learning with bandit feedback [5] – we need to
“exploit” by allocating tests primarily to high-risk individuals, but we must also
“explore” by testing broadly to identify any previously “safe” populations that are
becoming risky. At the heart of Eva is a contextual bandit algorithm that nav-
igates this tradeoff, but, as we discuss below, our real-world setting introduces
a number of unique challenges including highly-imbalanced data, time-varying
dynamics, supply-chain constraints, and batched feedback.

1.1 Contrast to Conventional Travel Protocols

To the best of our knowledge, Eva was the first attempt at a purely data-driven
protocol for screening and travel restrictions. To appreciate the value of rein-
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forcement learning in this setting, it may help to contrast Eva to the travel
protocols used by other countries in the European Union at the time.

Most national-level travel protocols proceeded by designating sets of countries
of origin as white-, grey-, red-, or black-listed. Roughly speaking, travelers from
white-listed countries would be allowed to enter freely; travelers from grey-listed
countries would need to provide proof of a recent negative PCR test to enter;
travelers from red-listed countries would need to quarantine for a significant
period upon arrival; travelers from black-listed countries would be forbidden from
entering for any reasons that were deemed non-essential. Importantly, different
nations would differ in their color designations of origin countries, in part because
these designations were largely informed by human judgement. More specifically,
one would ideally use data on COVID-19 prevalence within the asymptomatic
traveler population from an origin country to determine its color designation.
However, at the time, such data was non-existent because testing was scarce.
Consequently, decision-makers instead used proxy data in the form of publicly
reported population-level epidemiological metrics (new cases per capita, new
deaths per capita, and positivity rates in testing). The gap between proxy data
and the ideal COVID-19 prevalence rates in traveler populations left some room
for interpretation.

By contrast, Eva’s reinforcement learning strategy sought to directly collect
data on prevalence in the populations of interest as it was screening. Although
this is clearly more costly (both financially and operationally) than using proxy
data, as we will discuss later on, the higher-quality data directly translates to
superior performance. In essence, this is the key value proposition in favor of
reinforcement learning for this setting.

2 Problem Statement

As discussed below, at least 24 hours prior to travel, each passenger submits a
Passenger Locator Form which contains some basic demographic information (in-
cluding their age, gender, and origin country) and projected itinerary in Greece.
(See Sections 3 and 4 below for details on how this form was designed and what
it contains.) Importantly, since all collected information is categorical, there are
a finite number of possible traveler features X .

Furthermore, there are approximately 40 entry points to Greece, including
land borders, seaports and airports. Denote the set of entry points by E . Let
Ax,e(t) denote the number of arrivals of travelers with feature x at entry e
on day t. Finally, let Be(t) denote an entry-specific testing budget determined
exogenously by the Secretary General of Public Health. (See also Section 3 below
for details on how these budgets were determined.)

In addition to these (known) operational quantities, let Rx(t) denote the
unknown underlying risk for a passenger with feature x on day t. In particu-
lar, a random passenger with features x tested on day t will test positive with
probability Rx(t).
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Our goal is to determine the number of tests Tx,e(t) to allocate to passengers
with feature vector x ∈ X , arriving at entry e on day t in order to maximize
the expected number of infections caught at the border over the course of the
entire time horizon T (summer of 2020) subject to various testing constraints.
Mathematically, we seek to maximize

max
T (·)

E

[ T∑
t=1

∑
x∈X

∑
e∈E

Tx,e(t)Rx(t)

]
.

subject to entry-specific budget constraints on testing,∑
x∈X

Tx,e(t) ≤ Be(t) for every entry e ∈ E ,

and the constraint that we cannot test more travelers than actually arrive at a
particular entry on a particular day,

Tx,e(t) ≤ Ax,e(t) for every feature x ∈ X and entry e ∈ E .

Importantly, our decisions are Tx,e(t) are adapted, i.e., they can depend on
any data available before time t. Finally, we stress that, we do not know the
true traveler risk Rx(t). Instead, we must estimate R̂x(t) using testing results
from previous time steps, resulting in an exploration-exploitation tradeoff in the
choice of Tx,e(t).

3 Practical Considerations and Modeling

The previous description of the testing problem is stylized and abstracts away
many of the practical constraints and real-world issues of deployment. We next
provide a few indicative examples of such issues.

Determining the Feature Set X . First, the above description of the problem
assumes the set of available features is fixed and exogenously given. In reality,
before the deployment of Eva, we worked with the Secretary General of Public
Health, and Data Protection Officers to design the PLF which solicited these
features. In other words, we could partially control the set X .

Designing the PLF again entails a tradeoff: On the one hand, we would like
as much epidemiologically relevant data as possible about each traveler (past
medical records, their individual risky behaviors, their occupation, etc.). On the
other hand, such detailed data is particularly invasive and raises ethical con-
cerns. Striking a balance involved collaborating with a broad variety of experts
including privacy scholars, lawyers, and epidemiologists, to i) identify a minimal
set of informative data to solicit and ii) implement a transparent privacy policy
about how that data would be used, how it would be protected, and how it could
(upon passenger request) be deleted.



Reinforcement Learning for Public Health: Targeted COVID-19 Screening 5

Designing the Testing Supply-Chain. Our previous discussion simply asserts the
testing budgets Be(t) are specified exogenously and fixed, but where do these
budgets come from? Some thought suggests that every test performed at a point
of entry must be sent to a nearby laboratory to be processed. The budget Be(t)
is thus affected by a host of supply-chain design choices including:

. The number of labs with which we choose to contract,

. To which labs we send samples from entry e,

. Individual Lab processing capacity as determined by available machines for
processing PCR tests and staffing.

Hence, we worked closely with the Greek government to optimize this testing
supply-chain and maximize our budget. As an example, we argued strongly for
Dorfman group testing (group size 5) to increase the effective testing capacity
without compromising accuracy. As a second example, we formulated a stochas-
tic, mixed-binary linear optimization problem to assess different supply-chain
configurations (i.e. determining which laboratories would serve which points of
entry). Policymakers utilized outputs from this optimization formulation as a
decision-support tool and find a suitable design that mitigated transportation
and logistics costs while providing the adequate budget to all points of entries.

The Flow of Information. Finally, our stylized formulation in Section 2 ob-
scures the precise evolution of information in the system. Specifically, because
of concerns about internet connectivity at particularly remote points of entry,
all testing decisions for the day needed to be made at the beginning of the
day. This phenomenon is frequently termed “batching" in the bandit literature.
Moreover, even after a passenger was tested, results would only be available
24 − 48 hours later due to (random) lab processing times. This phenomenon
is frequently termed “delayed-feedback" in the bandit literature. Consequently,
when assigning a test to a passenger, we do not know the testing results of pas-
sengers previously tested on the same day, know only some of the results from
passengers tested between yesterday and the day before, and know all results for
passengers tested more than 48 hours previous.

This flow of information imposes a number of additional constraints on our
system. For example, since decisions are batched, computed centrally and then
transmitted to points of entry at beginning of the day, our algorithm must be
exceedingly computationally efficient. Indeed, we needed to reliably compute all
testing decisions each day in less than 5 minutes (see also Section 5.) Moreover,
it is not enough to determine Txe(t), the number of x-passengers to test at en-
try e on day t, one must actually identify Txe(t) specific passengers from the
list of arriving passengers to test, and identify them as they disembark. Finally,
more generally, our reinforcement learning algorithm should handle the above
information delays, as well as delays caused by any unexpected disruptions at in-
dividual laboratories. In particular, we would not want all tests for x-passengers
performed at the same entry point or processed at the same lab, since an un-
expected disruption might leave us with no information about x-passengers at
all.
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The above list of real-world considerations is far from exhaustive. (We refer
the interested reader to [2] for more details.) In mentioning them, we only wish to
stress that in any large-scale, real-world deployment of a reinforcement learning
tool, the actual reinforcement learning algorithm is only one piece of a larger
puzzle. There are often a host of surrounding operational and logistical challenges
that need to be solved. Indeed, reinforcement learning only works well if there is a
reliable, fast feedback loop of information, and solving the operational problems
to facilitate that loop should be a first order concern.

4 Method

Figure 1 illustrates the operational flow of Eva.

Fig. 1: Project Eva. A reinforcement learning system for COVID-19 screening that
we deployed during the summer of 2020 (Aug 6 to Nov 1) across all 40 points of entry
to Greece, including airports, sea ports and land crossings. Figure reproduced from [1].

Information Collection: First, all travelers complete a PLF (one per household)
at least 24 hours prior to arrival in Greece. This form serves to collect impor-
tant information on features (origin region and country, age group, gender),
operations (point and date of entry) and potential contact tracing (contact in-
formation, destination within Greece).

Risk Estimation: Next, we use recent testing results to form risk estimates of
arriving travelers based on their feature information. Estimation is especially
challenging since (i) our outcomes are highly imbalanced, since only 1-2 out
of every 1000 travelers tested positive over the course of the summer, (ii) our
training data is limited to a 14-day rolling window of the most recent testing
results to ensure that our estimates are current, (iii) our primary predictive
feature (origin location) is very high-dimensional since it is a categorical variable
with a very large number of levels (e.g., we observed travelers from over 17,000
regions of origin).
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We address these challenges in two steps. First, we use LASSO logistic re-
gression [9] to reduce the dimensionality of the problem, grouping travelers into
a small number of discrete types. Second, we use empirical Bayes [10] to learn a
shared prior across different passenger types; this step is critical to reduce the
variance of traveler types with very few arrivals. Figure 2 shows the resulting
(anonymized) actual risk estimates on a specific day; this plot was featured on
dashboards for Greek policymakers to inform domestic downstream decisions.
[1] describes the technical specifications and associated details.

Fig. 2: Risk Estimates. Shown for each (low-dimensional) traveler type on a given
day, ordered from high to low risk. We depict the mean and [5%, 95%] confidence
intervals of the estimated posterior distribution. Figure reproduced from [1].

Allocating Tests: Equipped with high-quality risk estimates, we build on the
contextual bandit literature [5] to target a subset of travelers for PCR test-
ing based on their feature information. Unlike the classical contextual bandit
literature, our problem simultaneously suffers nonstationary rewards (due to
the continuously evolving risk estimates), batched decision-making (all testing
decisions must be made at the start of the day), delayed feedback (results of
allocated tests are returned only after 48 hours), and constraints (entry-specific
budgets and arrivals). We propose a modified contextual bandit algorithm with
certainty-equivalent updates to seamlessly handles these characteristics. Figure 3
shows the resulting (anonymized) actual test allocations (relative to arrivals) on
a specific day; this plot was featured on dashboards for Greek policymakers to
inform domestic downstream decisions. [1] describes the technical specifications
and associated details.

Closing the Loop: All allocated tests were processed in a laboratory and sent
to Eva’s database after a 48-hour delay. These results informed risk estimates
and test allocations in the next time periods. This dynamic feedback loop was
critical to ensuring Eva’s agility — closely following the dynamic ebb and flow of
traveler risk across the globe — making targeted testing decisions that effectively
safeguarded public health.
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Fig. 3: Test Allocations by Arrivals. Shown for each (low-dimensional) traveler
type on a given day, ordered from high to low risk. We depict the number of test
allocations (teal) and untested scheduled arrivals (pink) for each type. Our algorithm
allocates tests to essentially all high-risk arrivals (exploitation) but additionally assigns
a small number of tests to all types (exploration); distortions are due to port-specific
budget constraints. Figure reproduced from [1].

5 Resource Requirements

Eva was part of a larger system (travel.gov.gr) hosted by the Greek Ministry
of Digital Governance that was built in three tiers: user interface, back-end and
databases. The databases were hosted on Aurora PostgreSQL clusters and the
back-end was designed in a Java-Quarkus framework. As with any national-scale
ecosystem, there was significant heterogeneity in the access rights for different
entities. Thus, each component of the system is its own Virtual Private Cloud
(VPC), and the system only allows internal communication between compo-
nents through peering, excluding communication with the external internet. For
example, Eva was hosted on a separate VPC, and the resulting testing recom-
mendations were sent to the internal email client of a different VPC that sent
travelers their QR codes. Furthermore, Security Groups were defined to dictate
access to information by different users. For example, the Eva VPC could only
access aggregated and pseudonymized subsets of granular traveler data.

The system received and processed data from 30,000-100,000 households ev-
ery day. Due to various operational constraints (discussed in Section 7), the
allocation module of our system initiated at midnight, and all QR codes had to
be sent to travelers within 5 minutes. As a result, computational demands were
highly bursty. In order to ensure robustness while minimizing computational
burden, we used load balancing (splitting job requests across many identical
servers) and horizontal scalability (dynamically adjusting the number of servers
used based on the demand).

6 Field Evaluation

Eva was deployed across all ports of entry to Greece from Aug. 6th to Nov. 1st

2020. During the peak season (Aug. 6th to Oct. 1st) when most tourist arrivals
occurred, Eva processed approximately 41,830 (±12,784) PLFs each day and
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tested approximately 16.7% (±4.8%) of arriving households. At the conclusion
of the summer, by simple counting, we knew exactly many positive cases were
identified among those tested.

However, to assess efficacy, one must answer a counterfactual question: how
many positive cases might we have identified with an alternate, simpler testing
strategy? Indeed, if we could have identified a comparable number of cases, we
might have attained similar public health benefits at a fraction of the cost.

In general, answering counterfactual questions is notoriously difficult. Since
our alternate policy would have tested different passengers, how can we assess
if those passengers would be positive? Fortunately, in our setting, we can lever-
age established techniques from off-policy evaluation, namely inverse propensity
weight scoring, to estimate the number of positive cases the alternate testing
strategy would have found. We can then compare this estimated number of pos-
itive cases identified under the alternate strategy to the actual number of positive
cases found to assess effectiveness.

Using this strategy, we first compare Eva’s performance to randomized, surveil-
lance testing (see left panel of Figure 4). Recall, randomized surveillance testing
was the first proposed approach by Greece. We calibrate the alternate strat-
egy to use the same number of tests per port of entry as Eva, ensuring an
“apples-to-apples” comparison. We find that during the peak tourist season, ran-
dom surveillance testing would have identified 54.1% (±8.7%) of the number
of positive cases as Eva.4 We refer the interested reader to [1] for details on
the calculation. Said differently, randomized surveillance testing would require
1/.547 ≈ 1.85 times as many tests as Eva required to achieve the same public
health benefit, a substantive and expensive capital investment.

In the off-peak season (Oct.1 - Nov.6), randomized surveillance performs
somewhat better (equivalently, Eva exhibits less of a benefit). We estimate that
randomized surveillance would have identified 73.5% (±11.0%) of the cases that
Eva did. We attribute this difference to increased availability of testing. Specif-
ically, in the off-peak season, fewer tourists arrived, so it was possible to test a
larger fraction of arrivals with the same testing budget. As the fraction of ar-
rivals tested increased, the value of smart, targeted testing decreases. See right
panel of Figure 4.

Of course, randomized surveillance testing is a weak benchmark. Through-
out the summer, many countries published epidemiological data including the
number of new cases, number of deaths, and positivity rate in testing. These
data were far from perfect; many countries reported these figures sporadically,
or would substantially revise published figures after a few days or weeks. Some
countries reported nothing at all. Nontheless, these noisy data represented some
signal that might be exploited, and a stronger benchmark might be based on this
signal. Indeed, initial proposals in the European Union suggested basing travel
protocols upon such published metrics [6, 7].

4 For anonymity, we present statistics relative to the actual number of cases caught
by Eva.
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Fig. 4: Comparing Performance of Eva vs. Randomized Testing. Left Panel:
We see the actual number of infections identified by Eva and the estimated number
of infections identified by random, surveillance testing. Inset table gives the relative
performance of Eva over the peak and off-peak tourist seasons. Right Panel: The daily
performance ratio of Eva relative to random, surveillance testing as a function of the
fraction of arrivals tested each day. Inset shows the average fraction of tested daily over
peak and off-peak tourist season. Both figures reproduced from [1].

Consequently, we also compared the performance of Eva to 3 other bench-
mark policies corresponding to the 3 most popular epidemiological metrics: new
cases per capita, new deaths per capita, and daily positivity rate. For each policy,
the probability a passenger was tested was proportional to the current epidemio-
logical metric of their country of origin. Hence, passengers from countries deemed
more “risky” were tested with higher probability. Again, for an apples-to-apples
comparison, we ensure that the number of tests performed at each point of entry
matches those performed by Eva.

Figure 5 shows the comparison. Again, we see that Eva has a distinct edge
over the benchmark policies. Specifically, policies based upon cases per capita,
deaths per capita and positivity rates identified 69.0%(±9.4%), 72.7%(±10.6%),
and 79.7%(±9.3%), respectively, of the infected travelers identified by Eva per
test in the peak tourist season. Said differently, Eva identified 1.25x – 1.45x more
infections with the same testing budget. In the off-peak season, this benefit drops
to 1.09x - 1.15x. Again, we attribute the drop to increased availability of testing
in the off-peak season.

Why do we see Eva consistently outperforming these benchmarks? While
it is difficult to offer a definitive explanation, analysis in [1] strongly suggests
that the issue is not that our benchmark policies were insufficiently exploiting
the signal in the epidemiological data. Indeed, it seems any policy based on
these data would underperform relative to Eva. Instead, we conjecture that the
fundamental issue is that the measured epidemiological metrics provide signal
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Fig. 5: Comparing Performance of Eva vs. Benchmarks based on Epidemi-
ological Metrics. We compare the actual number of infections identified by Eva to
the estimated number of infections identified by benchmark policies based on publicly
reported cases per capita, deaths per capita, and positivity rate per country. Eva re-
tains an advantage over such policies, with a larger benefit in the peak tourist season.
Figure reproduced from [1].

about SARS-CoV-2 prevalence in the general, tested population of a country,
while we are only interested in prevalence among the subset of the population
that would travel to Greece in summer of 2020. Depending on the idiosyncratic
biases in a specific origin country’s testing protocol, the subset of would-be
travelers is likely systematically younger, wealthier, and more risk-taking than
the general, tested population. This discrepancy causes the signal in the reported
epidemiological metrics to be only weakly informative. Indeed, this observation
is perhaps the strongest argument for a reinforcement learning approach in this
application – since it allows one to collect high-quality data directly on the
population of interest.

7 Lessons learned

We next discuss some lessons learned from the design, development and deploy-
ment of Eva.

Privacy preservation is not just about hiding names. It is important to differ-
entiate between deidentification and anonymization. Neither masking sensitive
identifying information by assigning unique ids nor fully removing data fields
with unique identifying information (de-identification) is equivalent, legally or
ethically, to fully protecting against individual reidentification (anonymization).
Indeed, the latter task is substantially harder.
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Consider the following simple example: Suppose that we only retained infor-
mation about a traveler’s age group (0-9 years, 10-19 years, 20-29 years, etc.),
gender, region of origin, date of arrival, and testing status. On the surface, these
data are de-identified – they do not contain any traveler’s name or unique ID.
One might believe this de-identification is sufficient for anonymization.

However, suppose there was only one female traveler in her 30s visiting Greece
on August 1st, 2020 originating from the Gozo region of Malta and that this
traveler tested positive. If a malicious party had access to the relevant airline
manifest, they would be able to infer that this specific passengers name and that
they tested positive — despite the fact that her name was hidden in the testing
records — since her other attributes are sufficiently informative. Thus, with a
passenger manifest, she is re-identifiable.

While there are many guidelines for anonymizing data such as ensuring sub-
groups are sufficiently coarse with at least n members, these guidelines can be
hard to ensure in reinforcement learning contexts. For example, in our setting,
we cannot control how many passengers of each type x ∈ X arrive, a priori,
and, hence, cannot ensure subgroups are sufficiently coarse. Moreover, insofar
as algorithms for re-identification by pairing with an auxiliary dataset improve
every day, ensuring anonymization is an increasingly challenging task.

These observations underly the importance of data minimization (that is, re-
questing the minimum required information for a task) as instructed by the Gen-
eral Data Protection Regulation (GDPR). When designing real-world AI tools,
all stakeholders should seek to obtain and store a minimal subset of features
(least invasive) with sufficient predictive signal. Of course, data minimization
often entail sacrificing performance, but managing the trade-off between privacy
and effectiveness needs to be an explicit discussion at the inception of a project.

Modular design for continuous adaptation. Large-scale systems must be flexi-
ble in incorporating changes in the environment/policy or stakeholder’s require-
ments. Pandemic mitigation is an extreme example of the need for flexibility,
since travel protocols, testing technologies, availability of testing and availabil-
ity of vaccines were constantly changing. In response to this requirement, the
modular design of Eva, disassociating type extraction, estimation and test alloca-
tion allowed for seamlessly incorporating new types (e.g. vaccinated or not) and
different testing delays (e.g. rapid vs. PCR); see the end of [1] for a discussion.

Simplicity and transparency for trust. Public-facing projects that are designed
by interdisciplinary teams to support decision-making must provide transpar-
ent reasoning. In this vein, the modeling and design choices underlying Eva
were made not only for efficiency but also for conceptual simplicity; this allowed
all parties to evaluate and trust the system. For example, our combination of
LASSO and empirical Bayes transformed the high-dimensional traveler features
into a small, discrete set of traveler types with interpretable confidence intervals
that behaved intuitively. While not the most sophisticated statistical machin-
ery, this approach was readily understandable by medical collaborators and the
epidemiologists on the team.
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Beyond fostering trust among policy-makers, outputs from an AI project
are often used to qualitatively support downstream policy-making. For example,
our estimates were used across ministries of the Greek Government to position
mobile testing units, guide smart contact-tracing, and adjust social distancing
measures. Given the variety of potentially non-technical policy-makers leveraging
outputs of the system to inform their decision-making, clarity and transparency
of outputs and reasoning are critical.

The algorithm and the technology is not enough. As mentioned earlier in Sec-
tion 3, in large-scale systems like Eva, the algorithm and technology components
are only a piece of the larger puzzle. One must consider practical constraints of
the larger ecosystem in the design phase of the algorithm. Often, a simpler al-
gorithm that dovetails well with practical consideration will fare far better than
a state-of-the-art algorithm that is too inflexible for real-world idiosyncracies.

8 Conclusion

Artificial Intelligence is still in its early stages of adoption, and every day re-
searchers find new ways to leverage these tools to address real-world challenges.
As we as a community continue to deploy AI solutions, we should strive for in-
disciplinary teams with expertise beyond algorithmic design. “Build a big tent"
– one large enough for humanists, computer scientists, operations researchers,
and policy-makers – and then leverage their expertise. The real-world problems
we face are multifaceted and complex. AI alone won’t solve them, but, partnered
with other approaches, it can be a crucial tool.
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