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Problem definition: We study personalized product recommendations on platforms when customers have

unknown preferences. Importantly, customers may disengage when offered poor recommendations.

Academic / Practical Relevance: Online platforms often personalize product recommendations using

bandit algorithms, which balance an exploration-exploitation tradeoff. However, customer disengagement—a

salient feature of platforms in practice—introduces a novel challenge, since exploration may cause customers

to abandon the platform. We propose a novel algorithm that constrains exploration to improve performance.

Methodology: We present evidence of customer disengagement using data from a major airline’s ad cam-

paign; this motivates our model of disengagement, where a customer may abandon the platform when offered

irrelevant recommendations. We formulate the customer preference learning problem as a generalized linear

bandit, with the notable difference that the customer’s horizon length is a function of past recommendations.

Results: We prove that no algorithm can keep all customers engaged. Unfortunately, classical bandit algo-

rithms provably over-explore, causing every customer to eventually disengage. Motivated by the structural

properties of the optimal policy in a scalar instance of our problem, we propose modifying bandit learning

strategies by constraining the action space upfront using an integer program. We prove that this simple

modification allows our algorithm to perform well by keeping a significant fraction of customers engaged.

Managerial Implications: Platforms should be careful to avoid over-exploration when learning customer

preferences if customers have a high propensity for disengagement. Numerical experiments on movie recom-

mendations data demonstrate that our algorithm can significantly improve customer engagement.

Key words : bandits, recommendation systems, collaborative filtering, disengagement, cold start

1. Introduction

Personalized customer recommendations are a key ingredient to the success of platforms such as Netflix,

Amazon and Expedia. Product variety has exploded, catering to the heterogeneous tastes of customers.

However, this has also increased search costs, making it difficult for customers to find products that
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interest them. Platforms add value by learning a customer’s preferences over time, and leveraging this

information to match her with relevant products.

The personalized recommendation problem is typically formulated as an instance of collaborative fil-

tering (Sarwar et al. 2001, Linden et al. 2003). In this setting, the platform observes different customers’

past ratings or purchase decisions for random subsets of products. Collaborative filtering techniques use

the feedback across all observed customer-product pairs to infer a low-dimensional model of customer

preferences over products. This model is then used to make personalized recommendations over unseen

products for any specific customer. While collaborative filtering has found industry-wide success (Breese

et al. 1998, Herlocker et al. 2004), it is well-known that it suffers from the “cold start” problem (Schein

et al. 2002). In particular, when a new customer enters the platform, no data is available on her prefer-

ences over any products. Collaborative filtering can only make sensible personalized recommendations

for the new customer after she has rated at least O(d logn) products, where d is the rank (i.e., dimension

of the low-dimensional model learned via collaborative filtering) and n is the total number of products.

Consequently, bandit approaches have been proposed in tandem with collaborative filtering (Bresler

et al. 2014, Li et al. 2016, Gopalan et al. 2016) to tackle the cold start problem using a combination

of exploration and exploitation. The basic idea behind these algorithms is to sequentially offer random

products to a customer during an exploration phase, learn the customer’s low-dimensional preference

model, and then exploit this model to make good recommendations.

A key assumption underlying this literature is that the customer is patient, and will remain on the

platform for the entire (possibly unknown) time horizon T regardless of the goodness of the recom-

mendations that have been made thus far. However, this is a tenuous assumption, particularly when

customers have strong outside options (e.g., a Netflix user may abandon the platform for Hulu if they

receive a series of bad entertainment recommendations). We demonstrate this effect using customer

panel data on a series of ad campaigns from a major commercial airline. Specifically, we find that a

customer is far more likely to click on a suggested travel product in the current ad campaign if the

previous ad campaign’s recommendation was relevant to her. In other words, customers may disengage

from the platform and ignore new recommendations entirely if past recommendations were irrelevant.

In light of this issue, we introduce a new formulation of the bandit product recommendation problem

where customers may disengage from the platform depending on the rewards of past recommendations,

i.e., the customer’s time horizon T on the platform is no longer fixed, but is a function of the platform’s

actions thus far.

Customer disengagement introduces a significant difficulty to the dynamic learning or bandit literature.

We prove lower bounds that show that any algorithm in this setting achieves regret that scales linearly in

T (the customer’s time horizon on the platform if they are given good recommendations). This hardness

result arises because no algorithm can satisfy every customer early on when we have limited knowledge
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of their preferences; thus, no matter what policy we use, at least some customers will disengage from

the platform. The best we can hope to accomplish is to keep a large fraction of customers engaged on

the platform for the entire time horizon, and to match these customers with their preferred products.

However, classical bandit algorithms perform particularly badly in this setting — we prove that

every customer disengages from the platform with probability one as T grows large. This is because

bandit algorithms over-explore: they rely on an early exploration phase where customers are offered

random products that are likely to be irrelevant for them. Thus, it is highly probable that the customer

receives several bad recommendations during exploration, and disengages from the platform entirely.

This exploration is continued for the entire time horizon, T , under the principal of optimism. This is

not limited to intentional exploration: we show that a greedy exploitation-only algorithm also under-

performs due to excessive natural exploration. Consequently, the platform misses out on its key value

proposition of learning customer preferences and matching them to their preferred products.

Our results demonstrate that one needs to more carefully balance the exploration-exploitation trade-

off in the presence of customer disengagement. We propose a simple modification of classical bandit

algorithms by constraining the space of possible product recommendations upfront. We leverage the

rich information available from existing customers on the platform to identify a diverse subset of prod-

ucts that are palatable to a large segment of potential customer types; all recommendations made by

the platform for new customers are then constrained to be in this set. This approach guarantees that

mainstream customers remain on the platform with high probability, and that they are matched to their

preferred products over time; we compromise on tail customers, but these customers are unlikely to show

up on the platform, and catering recommendations to them endangers the engagement of mainstream

customers. We formulate the initial optimization of the product offering as an integer program. We then

prove that our proposed algorithm achieves sublinear regret in T for a large fraction of customers, i.e., it

succeeds in keeping a large fraction of customers on the platform for the entire time horizon, and matches

them with their preferred product. Numerical experiments on synthetic and real data demonstrate that

our approach significantly improves both regret and the length of time that a customer is engaged with

the platform compared to both classical bandit and greedy algorithms.

1.1. Main Contributions

We highlight our main contributions below:

1. Evidence of disengagement: Using panel data on ad campaigns from a major airline, we show that

the relevance of past recommendations affects a customer’s decision to stay on the platform.

2. Disengagement model: We modify the classical generalized linear bandit formulation for making

personalized product recommendations, so that the customer’s horizon length is endogenously deter-

mined by past recommendations, i.e., the customer may exit if given poor recommendations.
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3. Hardness & classical approaches: We first show that no algorithm can keep every customer engaged;

however, we can hope to perform well on a subset of customers. Unfortunately, classical bandit and

greedy algorithms over-explore, causing every customer to eventually disengage.

4. Algorithm: We first reduce the scalar instance of our problem to a known scheduling problem,

implying that it has an optimal index-based policy. We analyze the structural properties of this policy,

and show that it avoids arms that are likely sub-optimal for the entire time horizon.

Motivated by this result, we propose the Constrained Bandit algorithm, which modifies standard

bandit strategies by constraining the product set upfront using a novel integer programming formulation.

The integer program leverages information on other customers on the platform to select a subset of

products that are likely to be relevant for the incoming customer. Unlike classical approaches, the

Constrained Bandit achieves sublinear regret for a significant fraction of customers.

5. Numerical experiments: Extensive numerical experiments on synthetic and real world movie rec-

ommendation data demonstrate that the Constrained Bandit significantly improves both regret and the

length of time that a customer is engaged with the platform.

1.2. Related Literature

The value of personalizing the customer experience has been recognized for a long time (Surprenant

and Solomon 1987), with recent focus on online content and product recommendations (Besbes et al.

2015, Demirezen and Kumar 2016, Farias and Li 2019). We take the widely-used collaborative filtering

framework (Sarwar et al. 2001, Su and Khoshgoftaar 2009) as our point of departure. All these methods

suffer from the cold start problem (Schein et al. 2002): when a new customer arrives, no data is available

on her product preferences, making the problem of personalized recommendations challenging.

Bandits: Consequently, bandit approaches have been proposed in tandem with collaborative filtering

(Bresler et al. 2014, Li et al. 2016, Gopalan et al. 2016) to tackle the cold start problem using a combi-

nation of exploration and exploitation. These algorithms essentially offer random products to customers

during an exploration phase, learn the customer’s preferences over products, and then exploit this model

to make good recommendations. In this paper, we consider the additional challenge of customer disen-

gagement, which introduces a significant difficulty to the dynamic learning or bandit literature. In fact,

we show that traditional bandit approaches over-explore, and fail to keep any customer engaged on the

platform in the presence of disengagement. Instead, we transfer knowledge (Bastani 2021) from other

customers on the platform to make more palatable recommendations from the beginning.

At a high level, our work also relates to the broader literature employing bandits on platforms, such

as assortment selection (Agrawal et al. 2016, Kallus and Udell 2016) or matching heterogeneous workers

to jobs (Johari et al. 2017). Relatedly, Shah et al. (2018) study bandit learning where the platform’s

decisions affects the arrival process of new customers; interestingly, they find that classical bandit algo-

rithms can perform poorly due to under-exploration. Closer to our findings, Russo and Van Roy (2018)
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argue that bandit algorithms can over-explore when an approximately good solution suffices, and propose

constraining exploration to actions with sufficiently uncertain rewards. These studies rely on optimally

balancing the exploration-exploitation tradeoff under bandit feedback. A closely related goal is best arm

identification, where one seeks to maximize the probability of identifying the best arm at the end of the

time horizon (Garivier and Kaufmann 2016). More generally, in product ranking and selection, one may

wish to learn the top k products in order to recommend assortments. Suitable algorithms offer customers

subsets of products to infer the underlying customer choice model (Chen et al. 2018, Feng et al. 2018).

A key assumption underlying the literature above is that the time horizon T is fixed and independent

of the goodness of the decisions made by the decision-maker. We show that this is a tenuous assumption

for recommender systems, since customers may disengage from the platform when offered poor recom-

mendations. Thus, the customer’s time horizon T is endogenously determined by the platform’s actions,

necessitating a different analysis.

Customer Disengagement: Customer disengagement and its relation to service relevance have been

extensively studied. For instance, Venetis and Ghauri (2004) use a structural model to establish that

service relevance contributes to long term customer relationships and retention. Bowden (2009) models

the differences in engagement behavior across new and repeat customers. Sousa and Voss (2012) study

the impact of e-service relevance on customer behavior in multi-channel services.

Closer to our work, Fitzsimons and Lehmann (2004) use a large-scale experiment on college stu-

dents to demonstrate that poor recommendations can have a considerably negative impact on customer

engagement. We find similarly that poor recommendations result in customer disengagement on airline

campaign data. Relatedly, Tan et al. (2017) empirically find that increasing product variety on Netflix

increases demand concentration around popular products; this is surprising since one may expect that

increasing product variety would cater to the long tail of customers, enabling more nuanced customer-

product matches. However, increasing product variety also increases customer search costs, which may

cause customers to cluster around popular products or disengage from the platform entirely. Our pro-

posed algorithm, the Constrained Bandit, makes a similar tradeoff — we constrain our recommendations

upfront to a set of popular products that cater to mainstream customers. This approach guarantees

that mainstream customers remain engaged with high probability; we compromise on tail customers,

but these customers are unlikely to show up, and catering recommendations to them endangers the

engagement of mainstream customers.

There are also several papers that study service optimization to improve customer engagement. For

example, Davis and Vollmann (1990) develop a framework for relating customer wait times with service

relevance perception, while Lu et al. (2013) provide empirical evidence of changes in customer purchase

behavior due to wait times. Kanoria et al. (2018) model customer disengagement based on the goodwill

model of Nerlove and Arrow (1962). In their work, a service provider has two options: a low-cost service
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level with high likelihood of customer abandonment, or a high-cost service level with low likelihood

of customer abandonment. Similarly, Aflaki and Popescu (2013), model the customer disengagement

decision as a deterministic known function of service relevance. None of these papers study learning in

the presence of customer disengagement.

A notable exception is Johari and Schmit (2018), who learn a customer’s tolerance level in order to

send an appropriate number of marketing messages without creating customer disengagement. Here, the

decision-maker’s objective is to learn the customer’s tolerance level, which is a scalar quantity. Similar

to our work, the customer’s disengagement decision is endogenous to the platform’s actions (e.g., the

number of marketing messages). However, in our work, we seek to learn a low-dimensional model of

the customer’s preferences, i.e., a complex mapping of unknown customer-specific latent features to

rewards based on historical product ratings/choices. The added richness in our action space (product

recommendations rather than a scalar quantity) necessitates a different algorithm and analysis. Our

work bridges the gap between machine learning techniques (collaborative filtering and bandits) and the

extensive modeling literature on customer disengagement and service relevance optimization.

2. Motivation

We use customer panel data from a major commercial airline, obtained as part of a client engagement at

IBM, to provide evidence for customer disengagement. The airline conducted a sequence of ad campaigns

over email to customers that were registered with the airline’s loyalty program. Our results suggest that

a customer indeed disengages with recommendations if a past recommendation was irrelevant to her.

This finding motivates our problem formulation described in the next section.

The airline conducted 7 large-scale non-targeted ad campaigns over the course of a year. Each campaign

emailed loyalty customers destination recommendations hand-selected by a marketing team at discounted

rates; all customers received the same recommendations. Our sample consists of 130,510 customers. For

each campaign, we observe whether or not the customer clicked on the link provided in the email after

viewing the recommendations. We assume that a click signals a positive reaction to the recommendation,

while no click could signal either (i) a negative reaction to the recommendation, or (ii) that the customer

has already disengaged with the airline campaign and is no longer responding to recommendations.

Since recommendations were not personalized, we use the heterogeneity in customer preferences to

understand customer engagement in the current campaign as a function of the (customer-specific) rel-

evance of recommendations in previous campaigns. To this end, we use the first 5 campaigns in our

data to build a score that assesses the relevance of a recommendation to a particular customer. We then

evaluate whether the relevance of the recommendation in the 6th (previous) campaign affected the cus-

tomer’s response in the 7th (current) campaign after controlling for the relevance of the recommendation

in the 7th (current) campaign. Our reasoning is as follows: in the absence of customer disengagement,
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the customer’s response to a campaign should depend only on the relevance of the current campaign’s

recommendations; if we instead find that the relevance of the previous campaign’s recommendations

plays an additional negative role in the likelihood of a customer click in the current campaign, then this

strongly suggests that customers who previously received bad recommendations have disengaged from

the airline campaigns.

We estimate a personalized relevance score of recommendations for each customer by applying col-

laborative filtering to click data from the first 5 campaigns (see Appendix A.1 for details).1 While we

do not have access to other customer-specific variables (e.g., customer loyalty tier/status, unobserved

travel preferences), we show in Appendix A.2 that we still obtain unbiased treatment effect estimates

because the campaigns were pre-determined and non-targeted.

Regression Specification. We perform our regression over the 7th (current) campaign’s click data.

Specifically, we examine if the relevance of the recommendation in the 6th (previous) campaign affected

the customer’s response in the current campaign after controlling for the relevance of the current cam-

paign’s recommendation. For each customer i, we use the collaborative filtering model to evaluate the

relevance score previ of the previous campaign’s recommendations and the relevance score curri of the

current campaign’s recommendation. We then perform a logistic regression:

P(yi = 1) = f(β0 +β1 · previ +β2 · curri) ,

where f is the logistic function and yi is the click outcome for customer i in the current campaign.

We fit an intercept term β0, the effect of the previous campaign’s recommendation relevance on the

customer’s click likelihood β1, and the effect of the current campaign’s recommendation relevance on

the customer’s click likelihood β2. We expect β2 to be positive since better recommendations in the

current campaign should yield higher click likelihood in the current campaign. Our null hypothesis is

that β1 = 0, and a finding that β1 > 0 would suggest that customers disengage from the campaigns if

previous recommendations were of poor relevance.

Results. Our regression results are shown in Table 1. As expected, we find that customers are more

likely to click if the current campaign’s recommendation is relevant to the customer, i.e., β2 > 0 (p-value

= 0.02). More importantly, we find evidence for customer disengagement since customers are less likely

to click in the current campaign if the previous campaign’s recommendation was not relevant to the

customer, i.e., β1 > 0 (p-value = 7× 10−9). We caution that these results are based on observational

data, and are therefore suggestive rather than definitive.

1 A version of this score was used by the airline in a live pilot for making personalized recommendations to customers
in similar ad campaigns.
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Variable Point Estimate Standard Error

(Intercept) −3.62*** 0.02
Relevance Score of Previous Ad Campaign 0.06*** 0.01
Relevance Score of Current Ad Campaign 0.02** 0.01

*p < 0.10, **p < 0.05, ***p < 0.01

Table 1 Regression results from airline ad campaign panel data.

3. Problem Formulation

We motivate our formulation by embedding it within the popular collaborative filtering framework

(Sarwar et al. 2001, Linden et al. 2003). In this setting, the key quantity of interest is a matrix A∈Rm×n,

whose entries Aij are customer i’s utility from product j. Most entries in this matrix are missing since a

typical customer has only evaluated a small subset of available products. Collaborative filtering uses a

low-rank decomposition, A=U>V (in the linear utility case), where U ∈Rd×m, V ∈Rd×n for some small

value of d. The decomposition can be interpreted as follows: each customer i ∈ {1, ...,m} is associated

with some low-dimensional vector Ui ∈ Rd (column i of the matrix U) that models her preferences;

similarly, each product j ∈ {1, ..., n} is associated with a low-dimensional vector Vj ∈Rd (given by column

j of the matrix V ) that models its attributes. Then, the utility of product j to customer i is U>i Vj . We

assume that the platform has a large base of existing customers from whom we have already learned

good estimates of the matrices U and V . In particular, all existing customers are associated with known

vectors {Ui}mi=1, and similarly all products are associated with known vectors {Vj}nj=1. All product

attributes are bounded, i.e., there exists L> 0 such that ‖Vi‖2 ≤L is satisfied for all i∈ {1, ...,m}.

New Customer: Now, consider a single new customer that arrives to the platform. She forms a new

row in A, and all the entries in her row are missing since she is yet to view any products. Like the other

customers, she is associated with some vector U0 ∈ Rd that models her preferences, i.e., her expected

utility for product j ∈ {1, ..., n} is U>0 Vj . However, U0 is unknown because we have no data on her product

preferences yet. We model U0 ∼ P, where P is a known distribution over new customers’ preference

vectors; typically, P is taken to be the empirical distribution of known preference vectors associated

with the existing customer base {U1, ...,Um}. For analytical tractability, we take P to be a multivariate

normal distribution N (0, σ2Id).

At each time t, the platform makes a single product recommendation at ∈ {V1, ..., Vn}, and observes a

noisy signal of the customer’s expected utility U>0 at. More generally, we can model nonlinear customer

utilities using a generalized linear model, i.e.,

µ
(
U>0 at

)
+ εt ,

where εt is independent, zero-mean ξ-subgaussian noise and the link function µ is strictly increasing. For

instance, in linear regression, we have continuous outcomes with µ(x) = x; in logistic regression, we have
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binary outcomes with µ(x) = exp(x)/(1+exp(x)); in Poisson regression, we have integer-valued outcomes

µ(x) = exp(x). We seek to learn U0 through the customer’s feedback from a series of recommendations

in order to eventually offer her the best available product

V∗ = arg max
Vj∈{V1,...,Vn}

µ
(
U>0 Vj

)
= arg max
Vj∈{V1,...,Vn}

U>0 Vj .

We impose that µ
(
U>0 V∗

)
> 0, i.e., the customer receives positive expected utility from being matched

to her most preferred product on the platform.

In the case of a nonlinear link function, we make some additional assumptions from the generalized

linear bandit literature (Filippi et al. 2010). Specifically, we impose that our link function µ is kµ-

Lipschitz continuous and continuously differentiable with µ′(·) ≥ cµ on its domain. Furthermore, the

magnitude of the customer’s utility is non-negative and bounded by Ymax almost surely.

The problem of learning U0 now reduces to a classical generalized linear bandit, where we seek to learn

an unknown parameter U0 given a discrete action space {Vj}nj=1 and stochastic linear rewards. However,

as we describe next, our formulation as well as regret definition depart from the standard generalized

linear bandit by modeling customer disengagement.

3.1. Disengagement Model

Let T be the time horizon for which the customer will stay on the platform if she remains engaged

throughout her interaction with the platform. Unfortunately, poor recommendations can cause the cus-

tomer to disengage from the platform. In particular, at each time t, upon viewing the platform’s product

recommendation at, the customer makes a choice Υt ∈ {0,1}, where Υt = 1 signifies that the customer

has disengaged (and receives zero utility for the remainder of the time horizon T ) and Υt = 0 signifies

that the customer has chosen to remain engaged for the next time step.

There are many ways to model disengagement. Our primary model is loosely inspired by the experi-

mental results of Fitzsimons and Lehmann (2004), who find that irrelevant recommendations can lead

customers to ignore future recommendations due to the activation of a reactance state. For each cus-

tomer, we model a tolerance parameter ρ > 0 and a disengagement propensity p ∈ (0,1]. Then, the

probability that the customer disengages at time t (assuming she has been engaged until now) upon

receiving recommendation at is:

Pr[Υt = 1 | at] =

{
0 if u>0 at ≥ ρ ,

p otherwise.

In other words, each customer is satisfied with an expected utility of at least µ−1(ρ) from a recom-

mendation. If the platform makes a recommendation that results in a utility less than this threshold,

the customer will disengage with some positive probability p > 0. Here, ρ < u>0 V∗, i.e., there is at least
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one product on the platform that is acceptable to the customer. Note that we recover the classical lin-

ear bandit formulation (with no disengagement) when ρ→−∞. We discuss alternative disengagement

models in Section 3.4, and obtain qualitatively similar results.

We seek to construct a non-anticipating sequential policy π= {a1, · · · , aT } that learns U0 over time to

maximize the customer’s utility on the platform. Non-anticipating policies Π : π = {πt} form a sequence

of random functions πt that depend only on observations until time t.

Remark 1. All policies assume knowledge of the tolerance parameter ρ, the disengagement propen-

sity p, and the distribution of latent customer attributes P. In practice, these quantities may be unknown

parameters that need to be estimated from historical data, or tuned during the learning process. We dis-

cuss one possible estimation procedure of these parameters from historical movie recommendation data

in our numerical experiments (see §5). Furthermore, the disengagement parameters ρ and p may vary

by customer; in Appendix C.3, we extend to the case where each customer’s disengagement parameters

are sampled from a known joint distribution.

Notation: For any vector V ∈ Rd and positive semidefinite matrix X ∈ Rd×d, ‖V ‖X refers to the

operator norm of V with respect to matrix X given by
√
V >XV . For any series of scalars (vectors),

Y1, ...Yt, Y1:t refers to the column vector of the scalars (vectors) Y1,..,Yt. Next, we define the set S(u0, ρ)

of products that are tolerable to the customer, i.e., recommending any product from this (unknown) set

will not cause disengagement:

Definition 1. Let S(u0, ρ) be the subset of products that satisfy the tolerance threshold for a customer

with latent attribute vector u0. More specifically,

S(u0, ρ) := {i : u>0 Vi ≥ ρ} . (1)

In the classical bandit, this set contains all products, |S(u0, ρ)|= n. When S(u0, ρ) is large, exploration

is less costly, but as the customer tolerance threshold ρ increases, |S(u0, ρ)| decreases.

3.2. Performance Metric

Typically, the performance of π is measured by its cumulative expected regret (Lai and Robbins 1985). In

particular, we would compare the performance of our policy π against an oracle policy π∗ that knows U0

in advance and always offers the customer’s preferred product V∗. At time t, the instantaneous expected

regret of policy π for a new customer with realized attributes U0 = u0 is:

rπt (ρ,p,u0) =

{
µ
(
u>0 V∗

)
if Υt′ = 1 for any t′ < t ,

µ
(
u>0 V∗

)
−µ

(
u>0 at

)
otherwise.

This is the expected utility difference between the oracle’s recommendation and our policy’s recommen-

dation, accounting for the fact that the customer receives zero utility for all future recommendations

after she disengages. The cumulative expected regret for a given customer is then

Rπ(T,ρ, p,u0) =
T∑
t=1

rπt (ρ,p,u0) . (2)
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The usual goal is to find a policy π that minimizes the cumulative expected regret for a new customer

whose attributes are sampled from P =N (0, σ2Id). However, it is easy to show that no policy can obtain

sublinear regret over all customers when disengagement is salient.

Proposition 1 (Hardness Result). When ρ < ∞, any non-anticipating policy π ∈ Π cannot

achieve sublinear regret for all customers. That is, ∀T ,

inf
π∈Π

Rπ(T,ρ, p,u0) = Ω(T ) .

The proof is given in Appendix B.1. In other words, regardless of the policy chosen, there exists a subset

of users (with positive measure under P) who incur linear regret. Proposition 1 shows that product

recommendation with customer disengagement requires making a trade-off over the types of customers

that we seek to engage. Naturally, platforms prefer to engage a large fraction of customers (mainstream

customers), while potentially sacrificing the engagement of users with niche preferences (tail customers).

Thus, we introduce an alternative performance metric: for any policy π, let the set of satisfied customers

(i.e., customer preference vector realizations for which the policy achieves sublinear regret) be

Uπ(ρ,p,T ) := {u∈Rd :R(T,ρ, p,u0) =O(T ν) for some ν ∈ [0,1)} . (3)

Then, we define the Fraction of Satisfied Customers (FSC) under the customer distribution P as

FSCπ(ρ,p,T ) = Pu0∼P (Uπ(ρ,p,T )) . (4)

We will use the FSC metric to compare the performance of various policies under disengagement.

3.3. Classical Approaches

We may hope that widely-used approaches for product recommendations perform well in terms of the

FSC metric defined in Eq. (4). Our next result considers the FSC of the class of consistent bandit learning

algorithms ΠC (Definition EC.2 in Appendix D, based on Lattimore and Szepesvari 2016). This class

includes the well-studied UCB (e.g., Auer 2002, Abbasi-Yadkori et al. 2011), Thompson Sampling (e.g.,

Agrawal and Goyal 2013, Russo and Van Roy 2014), and other algorithms that balance an exploration-

exploitation tradeoff. We also consider a simple greedy Bayesian updating policy (stated formally as

Algorithm 3 in Appendix D), which greedily recommends the best estimated product and updates its

posterior estimates (relative to the prior P) based on observed customer feedback.

Proposition 2 (Failure of Bandits and Greedy). Let disengagement be salient for every cus-

tomer: for every u0 ∼ P, there is at least one product that may cause the customer to disengage, i.e.,

|S(u0, ρ)| < n. Then, there exists a product set {Vi}ni=1 such that consistent bandit algorithms π ∈ ΠC

and the greedy Bayesian updating algorithm keep zero customers satisfied as T →∞, i.e.,

sup
π∈ΠC

inf
{Vi}ni=1

FSCπ(ρ,p,T ) = 0 and inf
{Vi}ni=1

FSCGBU (ρ,p,T ) = 0 .
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The proof is given in Appendix B.1. Proposition 2 shows that consistent bandit and greedy algorithms

result in linear regret for every customer realization. The proof is based on a construction of products such

that the set of tolerable products satisfies |S(u0, ρ)|<d for every u0. Clearly, exploring outside this set can

lead to disengagement. However, one cannot statistically estimate the true customer latent attributes u0

without sampling products outside of the set; thus, all consistent bandit algorithms will sample outside

the set S(u0, ρ) infinitely many times (as T →∞), leading to customer disengagement with probability

1. This result highlights the tension between avoiding incomplete learning (which requires exploring

products outside the tolerable set) and avoiding customer disengagement (which requires restricting our

recommendations to the tolerable set). The design of bandit learning strategies fundamentally relies on

the assumption that the time horizon T is exogenous, making exploration inexpensive. While intuition

may suggest that greedy algorithms avoid over-exploration, they still involve natural exploration due to

the noise in customer feedback (see, e.g., Bastani et al. 2021), which may again cause the algorithm to

over-explore and choose irrelevant products.

These results illustrate that there is a need to constrain exploration to be within the set of tolerable

products S(u0, ρ). The challenge is that this set is unknown since the customer’s latent attributes u0

are unknown. However, our prior P gives us reasonable knowledge of which products lie in S(u0, ρ) for

mainstream customers. In the next section, we will leverage this knowledge to restrict the product set

upfront in the Constrained Bandit.

3.4. Alternative Disengagement Models

Thus far, we presented the simplest possible disengagement model. However, our approach easily extends

to alternative, more complex models of disengagement, e.g.,

1. The disengagement probability p may not be constant. It could depend on the time step t (capturing

the customer’s loyalty over time to the platform), or on the utilities derived from the recommendations

thus far {µ(u>0 ai)}ti=1 (one poor recommendation may be less likely to cause disengagement if past

recommendations were relevant). Then, we can express the customer’s disengagement decision as:

Pr[Υt = 1 | at] =

{
0 if u>0 at ≥ ρ ,

p(t,u0, a1, ...at) otherwise.

All results from our base model still hold as long as disengagement still occurs outside the set of tolerable

products with some minimum positive probability, i.e., p(t,u0, a1, ...at)≥ c̃ > 0 for all t,u0,{ai}ti=1.

2. The customer disengagement decision might be temporary, i.e., customers may decide to leave the

platform for some length of time before returning to the platform again. Then, we abuse notation to let

Υt denote the total time that the customer is disengaged due to all recommendations made until time t :

Υt | at =

{
0 if u>0 at ≥ ρ ,

T δ otherwise ,



Bastani et al.: Learning Recommendations with Customer Disengagement
13

for some δ ≤ 1. Our previous models imposed δ= 1 (the customer does not return for the remaining time

horizon), while δ = 0 models the classical bandit setting with no disengagement. In Appendix C.4, we

show that our hardness result no longer holds when disengagement is sufficiently temporary (i.e., when

δ ≤ 1/2), but even in this setting, constraining exploration still yields significant empirical value.

4. Constraining Exploration

We have so far established that classical approaches fail on the product recommendation problem with

customer disengagement. To gain an understanding of good policies in this setting, we first analyze

a simplified scalar instance of our problem, reducing it to a known scheduling problem that has an

optimal index-based policy. We analyze the structural properties of this policy, and show that it avoids

arms that are likely sub-optimal for the entire time horizon. Motivated by this result, we propose the

Constrained Bandit algorithm, which modifies standard bandit strategies by constraining the product

set upfront using a novel integer programming formulation. The integer program leverages information

on other customers on the platform to select a subset of products that are likely to be relevant for the

incoming customer. Unlike classical approaches, the Constrained Bandit guarantees good performance

on a significant fraction of customers.

4.1. Optimal policy for scalar case

First, consider a simplified version of our problem where customer response is a Bernoulli random

variable, and each product’s utility is independent of the utilities for other products, i.e., Vi = ei,∀i=

1, .., n. We can cast this as a Markov Decision Process (MDP) with:

1. Action space. The set of products A= {1, .., n}.

2. Rewards. If the customer is not disengaged, the reward for product recommendation at is a Bernoulli

random variable with success probability θat := 1/(1 + exp(−u>0 at)). If the customer is disengaged, the

reward is 0. The prior on the mean reward for product i is given by Beta(αi, βi).

3. State space. The state space S consists of |A| tuples, each tuple containing sufficient statistics for

the utility distribution of product i. Let Ft(i) denote the total number of times product i is recommended

until time t, and Kt(i) denote the total number of successes until time t. At time t,

st =
[

(Kt(1),Ft(1)) , .., (Kt(n),Ft(n))
]
.

Let st(i) denote the state space tuple associated with product i at time t, and let q̄t(i) be the current

estimate of the success probability of product i based on st(i).

4. Transition probabilities. We have stochastic transition probabilities T : s×A→ s given by

P (st+1(at) = st(at) + (1,1) | st, at) = θat ,

P (st+1(at) = st(at) + (0,1) | st, at) = 1− θat ,
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where only the state of at changes at time t. Note that the transition probabilities are also unknown but

can be estimated using the current state st.

The objective is to maximize time-discounted expected reward given by:

max
a1,a2,..

E

[
∞∑
t=0

ηtYat(St)
t∏

j=1

Pr[Υj = 0 | aj ]

]
, (CD)

where η > 0 is the discount factor. By Bellman’s principle, the optimal policy solves the following

recursive equation:

V ∗(s) = max
a={1,..,k}

E
[

Pr[Υ = 0 | a]
(
Ya(S) + ηV ∗(Ŝ)|(S = s,a)

)]
.

We will now map this recommendation problem to the “gold miner” machine scheduling problem, and

use the celebrated Gittins Index Theorem to analyze the optimal policy.

Equivalence with the gold miner scheduling problem (Gittins et al. 2011): Consider the problem

of extracting gold from n mines using a single machine. On a given day t, if the machine is used at

mine at, then a total of Yat(St) units of gold can be extracted, where St is the state of the system at

time t. However, the machine may break down forever with probability 1−Pat(St) if mine at is selected

in period t. The objective of the miner is to maximize the total (time-discounted) gold extracted by

optimizing where to use the machine. In particular, we wish to solve:

max
a1,a2,..

∞∑
t=0

E

[
ηtYat(St)

t∏
j=1

Paj (Sj)

]
. (GM)

Lemma 1 (§3.5 of Gittins et al. 2011). The optimal policy of the gold miner’s problem (GM) is

an index policy. In particular, the index of arm i is given by:

νi(s) = max
τ≥1

E

[∑τ
j=0 Yi(Sj) exp

(
−
∑j

k=0 Tk(Sk, i)
)∣∣∣∣∣S0 = s

]

E

[
1− exp(−

∑τ
k=0 Tk(Sk, i))

∣∣∣∣∣S0 = s

] ,

where Tk(Sk, i) =− log(η1+logη(Pi(Sk))).

We now take Yat to be a Bernoulli random variable with success probability θi if at = i. Since θi is

unknown to the miner, she forms a belief of the mine’s reward using the prior Beta(αi,βi). If we then

take the probability of the machine not failing to be:

Pat(St) := 1−Pr[Υt = 1 | at] =

{
p̃, if θat ≤ ρ,
1, otherwise.

(5)

Thus, we observe that problem (CD) and (GM) are identical, with p̃ := 1− p. Furthermore, Lemma 1

implies that the optimal policy of (GM) can be reduced to analyzing the state tuple st(i) separately for
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each product i to compute its Gittins index. We will next prove bounds on the indices of each product

in terms of the following stopping times:

τ∗i (s) = min{t : q̄t(i)≤ ρ|S0(i) = s} and τ̄∗i (s) = min{t : q̄t(i)>ρ|S0(i) = s} ,

where we recall that q̄t(i) is the current estimate of the success probability of product i. Here, τ∗i (s) is

a stopping time for the Markov process associated with product i, and denotes the first time at which

there is a nonzero chance of the machine breaking down. Conversely, τ̄∗i (s) denotes the first time at

which there is a zero chance of the machine breaking down.

Now, we define the state-dependent product sets

Kopt(st) = {i : τ∗i (st)> 0} ,

Ksub(st) =

{
i : τ̄∗i (st)> 0, E

[
p̃τ̄
∗
i (st)

]
≤ ρ(1− η)

η

(
(1− p̃)η− p̃η

1− p̃η

)}
.

Note that |Kopt(s0)|> 0 by our assumption that there is at least one product on the platform that is

tolerable the customer according to the Bayesian prior; similarly, |Ksub(s0)|> 0 by our assumption that

at least one product is not tolerable to the customer according to the Bayesian prior. The next lemma

(proof in Appendix B.2) relates the stopping times and product sets to the Gittins indices.

Lemma 2. Consider the gold miner’s problem (GM) with the probability of machine failure given by

Eq. (5). and also let

νopt = min
i∈Kopt(st)

νi(st) and νsub = max
i∈Ksub(st)

νi(st) .

Then, νopt ≥ νsub, and the optimal policy chooses a product in Kopt(st) and not in Ksub(st).

Lemma 2 shows that at time t, products in Ksub are ignored in favor of products in Kopt. The next

theorem shows that this ordering holds for the entire time horizon T with high probability.

Theorem 1. Consider the gold miner’s problem (GM) with the probability of machine failure given

by Eq. (5). Let θ∗opt := mini∈Kopt(s0) θi ≥ ρ+
√

loge(2) . Then, the optimal policy never selects products

from Ksub(s0) with probability at least

1− 2exp(−(θ∗opt− ρ)2)

1− exp(−(θ∗opt− ρ)2)
> 0 .

Theorem 1 (proof in Appendix B.2) shows that the optimal policy constrains exploration to an initially

determined set Kopt(s0) for the entire time horizon T with high probability. This result sharply departs

from classical bandit policies that would explore all products in an early exploration phase, particularly

since we are in a setting where customer feedback from one product does not inform customer feedback

from another product. This motivates our proposed Constrained Bandit algorithm.
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4.2. Algorithmic Strategy

Our results thus far suggest that a platform can only succeed by avoiding poor early recommendations.

Since we don’t know the customer’s preferences, this is impossible to do in general. However, the platform

has knowledge of the distribution of customer preferences P from past customers, and can transfer this

knowledge to avoid products that do not meet the tolerance threshold of most customers. We formulate

this product selection problem as an integer program, which ensures that any recommendations within

the optimal restricted set are acceptable to most customers. After selecting an optimal restricted set

of products, we follow a classical bandit approach (e.g., linear UCB by Abbasi-Yadkori et al. 2011).

Under this approach, if our new customer is a mainstream customer, she is unlikely to disengage from

the platform even during the exploration phase, and will be matched to her preferred product. However,

if the new customer is a tail customer, her preferred product may not be available in our restricted

set, causing her to disengage. This result is shown formally in Theorem 2 in the next section. Thus, we

compromise performance on tail customers to achieve good performance on mainstream customers.

To this end, we introduce a set diameter parameter γ in our integer program formulation. This

parameter tunes the size of the restricted product set based on our prior P over customer preferences.

Larger values of γ increase the risk of customer disengagement by introducing greater variability in

product relevance, but also increase the likelihood that the customer’s preferred product lies in the set.

On the other hand, smaller values of γ decrease the risk of customer disengagement if the customer’s

preferred product is in the restricted set, but there is a higher chance that the customer’s preferred

product is not in the set. Thus, appropriately choosing this parameter is a key ingredient of our proposed

algorithm. We discuss how to choose γ in §4.4 based on Theorem 2.

4.3. Constrained Bandit Algorithm

We seek to find a restricted set of products that cater to a large fraction of customers (measured with

respect to P), but are not too “far” from each other (to constrain exploration). The following notation

captures the likelihood that product i is relevant to a randomly sampled new customer:

Definition 2. Ci(ρ) is the probability of product i satisfying the new customer’s tolerance level:

Ci(ρ) = Pu0∼P(i∈ S(u0, ρ)) ,

where S(u0, ρ) is the set of tolerable products for a customer with attributes u0 (Definition 1).

In the presence of disengagement, we seek to explore over products that are likely to satisfy the new

customer’s tolerance level. For example, mainstream products may be tolerable for a large probability

mass of customers (with respect to P) while niche products may only be tolerable for tail customers.

Thus, Ci(ρ) translates our prior on customer latent attributes to a likelihood of tolerance over the space

of products. Estimating Ci(ρ) using Monte Carlo simulation is straightforward: we generate random
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customer latent attributes according to P, and count the fraction of customers for which product i was

within the customer’s tolerance threshold of ρ.

As discussed earlier, a larger product set increases the likelihood that the new customer’s preferred

product is in the set, but it also increases the likelihood of disengagement due to poor recommendations

during the exploration phase. However, the key metric here is not the number of products in the set,

but rather the similarity of the products in the set. In other words, we wish to restrict product diversity

in the set to ensure that all products are tolerable to mainstream customers. Thus, we define

Dij = ‖Vi−Vj‖2 ,

the Euclidean distance between the (known) features of products i and j, i.e., the similarity between

two products. We seek to find a subset of products such that the distance between any pair of products

is bounded by the set diameter γ. Let φij(γ) be the indicator function

φij(γ) =

{
1 if Dij ≤ γ ,
0 otherwise .

Note that γ and ρ are related. When the customer is less tolerant (ρ is large), we will choose smaller

values of the set diameter γ and vice-versa; we specify how to choose γ in §4.4.

The objective is to select a subset of products, which together have a high likelihood of containing the

customer’s preferred match under the distribution over customer preferences P (i.e., high Ci(ρ)), with

the constraint that no two products are too dissimilar from each other (i.e., pairwise distance greater

than γ). We propose solving the following product selection integer program:

OP(γ) = max
x,z

n∑
i=1

Ci(ρ)xi (6a)

s.t. zij ≤ xi, i= 1, . . . , n, (6b)

zij ≤ xj , j = 1, . . . , n, (6c)

zij ≥ xi +xj − 1, i= 1, . . . , n, j = 1, . . . , n, (6d)

zij ≤ φij(γ), i= 1, . . . , n, j = 1, . . . , n, (6e)

xi ∈ {0,1} i= 1, . . . , n. (6f)

The decision variables in the above problem are {xi}ni=1 and {zi,j}ni,j=1. In particular, xi defines whether

product i is included in the restricted set, and zi,j (defined through constraints (6b)–(6d)) is an indicator

variable for whether both products i and j are included in the restricted set. Constraint (6e) ensures

that only products that are “close” to each other are selected.

Solving OP(γ) results in a subset of products (products for which the corresponding xi is 1) that

maximizes the likelihood of satisfying the new customer’s tolerance level, while ensuring that every pair

is within γ distance from each other.
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We now describe the Constrained Bandit algorithm. From the UCB literature, an optimistic estimate

of the customer utility from product V is:

f(ût, V ) =

{
maxu∈Qt(ût) u

>V if µ(x) = x ,

û>t V +
(
C̃
√

4d log(t) log(2dT )
)
‖V ‖(X̄t+λI)−1 otherwise .

(7)

Note that we have a different expression for the case where the customer response is linear (µ(x) = x);

this is because we can take advantage of the following closed form of the uncertainty ellipsoid around

our estimate of u0 at time t in the linear case:

Qt(ût) =

{
u∈Rd : ‖ût−u‖X̄t ≤

(
ξ

√
d log

(
1 + tL2

δ

)
+
√
λ
ρ

γ

)}
.

Algorithm 1 Constrained Bandit(λ,γ)

Step 1: Constrained Exploration:
Solve OP(γ) to obtain constrained product subset Ξ; then, recommend a random product a1 ∈Ξ.
Step 2: Bandit Learning:
for t∈ [T ] do

Observe customer utility, Yt = µ (u>0 at) + εt.
Let ût be the unique solution to

∑t−1

k=1 (Yk−µ(a>k ût))ak = 0.
Let at = arg max{i∈Ξ}f(ût, Vi), for f defined in Eq. (7).
Recommend product at at time t if the customer is still engaged. Stop if the customer

disengages from the platform.
end for

Algorithm 1 is a two-step procedure. First, the action space is restricted to the product subset given

by OP(γ). This step ensures that subsequent exploration is unlikely to cause a significant fraction of

customers to disengage. Then, a standard bandit algorithm is used to learn the customer’s preferences

and match her with her preferred product through repeated interactions. We use the OFUL algorithm

(Abbasi-Yadkori et al. 2011) if the link function is identity, and the GLM UCB algorithm (Filippi et al.

2010) for general link functions. There are two input parameters: λ (a standard regularization parameter)

and γ (the set diameter). We discuss the selection of γ and the corresponding tradeoffs next.

4.4. Theoretical Guarantees

Lemma 3 shows that the FSC (defined in Eq. (4)) of the Constrained Bandit is strictly positive, even in

the worst case over product sets. In particular, we can always match some subset of customers to their

preferred products by constraining the action space upfront. Again, this is in contrast with bandit and

greedy algorithms (Proposition 2), which can achieve zero FSC. The proof is given in Appendix B.3.

Lemma 3. Let disengagement be salient for every customer: for every u0 ∼ P, there is at least one

product offering that may cause the customer to disengage, i.e., |S(u0, ρ)|<n. Then, in the worst case

over all allowable product sets {Vi}ni=1, there exists a set diameter threshold γ0 such that ∀γ < γ0,

inf
{Vi}ni=1

FSCCB(λ,γ)(ρ,p,T )> 0 .
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This result holds for any value of ρ, i.e., customers can be arbitrarily intolerant of products that

are not their preferred product V∗. Thus, the only way to make progress is to immediately recommend

their preferred product, which can trivially be done by restricting our product set Ξ to a single product.

By construction of OP(γ), this will be the most popular preferred product, so a positive fraction of

customers find this product optimal. Since these customers are immediately matched to their preferred

product, we incur zero regret on this subset of customers.

Echoing the insights from Theorem 1, Lemma 3 shows that there is nontrivial value in restricting the

product set upfront, which cannot be obtained through classical approaches. However, it considers the

degenerate case of constraining exploration to a single product, which is clearly too restrictive in practice,

especially when customers are relatively tolerant (i.e., ρ is small). Ideally, we would want insight into

how much the product set should be constrained as a function of the customer’s tolerance parameter.

To answer this question, we consider a fluid approximation of the product space. Since OP(γ) is

complex, we consider a continuous product space V = [−1,1]d to cleanly demonstrate the key tradeoff in

constraining exploration: a larger product set has a higher probability of containing customers’ preferred

product, but also a higher risk of disengagement. Furthermore, we shift the mean of the prior over the

customer’s latent attributes, so P =N (ū, σ
2

d Id), where ‖ū‖2 = 1. This ensures that our problem is not

symmetric, which again helps us analytically characterize the solution of OP(γ).

Theorem 2 shows that the Constrained Bandit achieves sublinear regret for a fraction of customers

under this albeit stylized setting. More importantly, it yields insights into how to choose the set diameter

γ as a function of the customer’s tolerance parameter ρ. We first define the following constants:

C1 :=
1−
√

1− γ2/4

σ
, C2 :=

dρ

σ(1− γ)
, C̃ := (d+ 1)Ymax +

2
√

3 + 2 log(1 + 2L2/λ)κµYmax
cµ

,

d̄=

√
2
(

1−
√

(1− γ2/4)
)
, and s := max{1,L2/λ}.

Theorem 2. Let P = N (ū, σ
2

d2 Id) and V = [−1,1]d. Then, there exists a set W of latent customer

attribute realizations (with positive probability under P), such that for all u0 ∈W, the cumulative regret

of the Constrained Bandit is

RCB(T,ρ, p,u0)≤

{
C̃d log(sT )

√
2T log(2dT ) if µ(x) = x ,

5
√
Td log (λ+TL)

(√
λ(d̄+ 1) + ξ

√
log (T ) + d log (1 +TL)

)
otherwise .

= Õ
(√

T
)
.

Computing a lower bound on the volume of W, we obtain that for any γ < 1,

FSCCB(λ,γ)(ρ,p,T )≥
(1− 2dexp(−C1))

(√
4 +C2

2 −C2

)
exp

(
−C2

2/2
)

2
√

2π
.
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The proof of Theorem 2 follows in three steps. First, we lower bound the probability that the con-

strained exploration set Ξ contains the preferred product for a new customer whose attributes are drawn

from P. Next, conditioned on the previous event, we lower bound the probability that the customer

remains engaged for the entire time horizon T when recommendations are made from the restricted

product set Ξ. Lastly, conditioned on the previous event, we can apply standard self-normalized mar-

tingale techniques for generalized models (Filippi et al. 2010) to bound the regret of the Constrained

Bandit algorithm for the customer subset W.

Theorem 2 provides an explicit characterization of the fraction of customers that we successfully serve

as a function of the customer tolerance parameter ρ and the set diameter γ. Thus, given a value of ρ, we

can choose the set diameter γ to optimize our FSC. As discussed earlier, larger values of γ increase the

risk of customer disengagement by introducing greater variability in product relevance, but also increase

the likelihood that the customer’s preferred product lies in the set.

In Appendix C.1, we approximate the optimal set diameter (that maximizes our lower bound on

FSC) using a single parameter optimization problem that can be solved using numerical optimization.

It is instructive to consider the simpler setting where ūi = 1/
√
d for all i, and ρ < 1/

√
d (more tolerant

customers); in this case, we can compute the optimal set diameter exactly as

γ∗ = 1− ρ
√
d .

This expression yields some useful comparative statics: we should choose a smaller set diameter γ when

customers are less tolerant (ρ is large) or when the rank d of the latent features is high. In practice, we

can tune the set diameter through cross-validation.

Remark 2 (Re-optimizing the constrained set). Our algorithm uses a fixed exploration set Ξ

for the entire horizon T . A natural alternative is to update this set dynamically, i.e., update our posterior

on the customer’s preference vector U0 using noisy customer feedback, and re-solve OP(γ) using this

posterior after every batch of observations (B time steps). Note that this departs from the structure of

the optimal policy in Theorem 1. Perhaps surprisingly, we provide analytical and numerical evidence

that frequent re-optimization reduces engagement time. This is because the variance of the noise in

customer feedback ε is often high (e.g., when click likelihood is low). The resulting uncertainty can cause

the posterior update on the customer’s latent attributes (and therefore the downstream IP solution) to

fluctuate significantly and recommend worse products. We formalize this argument in Proposition EC.1

of Appendix B.4, where we prove that dynamic updating of the product set does not necessarily lead to

improved performance. The performance gap is exacerbated in our numerical experiments (see Figure 2

in §5.1) since the variance of the noise is also typically unknown, and must be estimated on the fly. Thus,

in practice, we recommend either re-optimizing with a large batch size B, or fixing the constrained set.
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5. Numerical Experiments

We now compare the empirical performance of the Constrained Bandit with state-of-the-art Thompson

sampling (Chapelle and Li 2011, Russo and Van Roy 2014) and greedy Bayesian updating. We study

both synthetic data (§5.1) and real movie recommendation data (§5.2).

Benchmarks: We compare our algorithm with (i) linear Thompson Sampling (Russo and Van Roy

2014) and (ii) greedy Bayesian updating (referred to as MLE).

Constrained Thompson Sampling (CTS): We consider a Thompson Sampling version of the Con-

strained Bandit algorithm (see Algorithm 2 below). Recall that our approach allows for any bandit

strategy after obtaining a restricted product set based on our (algorithm-independent) integer program

OP(γ). To ensure a fair comparison, we use the same implementation of linear Thompson sampling

(Russo and Van Roy 2014) as our benchmark in the second step. Thus, any improvements in performance

can be attributed to restricting the product set.

Algorithm 2 Constrained Thompson Sampling (λ,γ)

Step 1: Constrained Exploration:
Solve OP(γ) to get the constrained set of products to explore over, Ξ. Let û1 = ū.
Step 2: Bandit Learning:
for t∈ [T ] do

Sample u(t) from distribution N (ût, σ
2Id).

Recommend at = arg max{i∈Ξ}µ(u(t)>Vi) if the customer is still engaged.
Observe customer utility, Yt = µ(U>0 at) + εt, and update ût to be the unique solution of∑t−1

k=1 (Yk−µ(a>k ût))ak = 0
Stop if the customer disengages from the platform.

end for

5.1. Synthetic Data

We generate synthetic data and study the performance of all three algorithms as we increase the cus-

tomer’s disengagement propensity p ∈ [0,1]. A low value of p implies that customer disengagement is

not a salient concern, and thus, one would expect Thompson sampling to perform well in this regime.

On the other hand, a high value of p implies that customers are extremely intolerant of poor recom-

mendations, and thus, all algorithms may fare poorly. We find that Constrained Thompson Sampling

performs comparably to vanilla Thompson Sampling when p is low, and offers sizeable gains over both

benchmarks when p is medium or large.

Data generation: We consider the standard collaborative filtering problem (described earlier) with

10 products. Recall that collaborative filtering fits a low rank model of latent customer preferences and

product attributes; we take this rank2 to be 2. We generate product features in each dimension uniformly

2 We choose a small rank based on empirical experiments showing that collaborative filtering models perform better
in practice with small rank (Chen and Chi 2018). Our results remain qualitatively similar with higher rank values.
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between -1 and 1. Similarly, latent user attributes are generated from a multivariate normal with with

mean [1/
√

2,1/
√

2]> ∈R2 and variance I2 ∈R2×2, where we recall that Id is the d-dimensional identity

matrix. These values ensure that, with high probability for every customer, there exists a product on the

platform that generates positive utility. Note that the product features are known to the algorithms, but

the latent user attributes are unknown. Finally, we take our noise ε∼N (0,5), the customer tolerance

ρ to be generated from a truncated N (0,1) distribution, and the total horizon length T = 100. All

algorithms are provided with the distribution of customer latent attributes, the distribution of the

customer tolerance ρ, and the horizon length T . They are not provided with the noise variance, which

needs to be estimated over time. Finally, we consider several values of the disengagement propensity

p ∈ {1%,10%,50%,100%}, to capture the value of restricting the product set with varying levels of

customer disengagement.

Engagement Time: We use average customer engagement time (i.e., the average time that a customer

remains engaged with the platform, up to time T ) as our metric for measuring algorithmic performance.

Note that, due to its asymptotic nature, we cannot compute the FSC metric in finite sample. However,

engagement time within a finite horizon is a closely related proxy, i.e., as we showed in our earlier

analysis, customer engagement is necessary to achieve low cumulative regret.

Figure 1 Time of engagement and 90% confidence intervals averaged over 100 randomly generated customers

for disengagement propensity p values of 1% and 10% (top row), 50%, and 100% (bottom row).
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Results: Figure 1 shows the customer engagement time averaged over 100 randomly generated users

(along with the 95% confidence intervals) for all three algorithms as we vary the disengagement propen-

sity p from 1% to 100%. As expected, when p= 1% (i.e., customer disengagement is insignificant), TS

performs well and CTS performs comparably. However, a greedy strategy is likely to converge to a sub-

optimal product outside of the customer’s relevance set, causing the customer to eventually disengage.

As we increase p, all algorithms perform worse, since customers become more likely to leave the platform.

As expected, we also see that CTS starts to significantly outperform the other two benchmark algorithms

as p increases. For instance, the mean engagement time of CTS improves over the engagement time of

the benchmark algorithms by a factor of 2 when p= 50% and by a factor or 4.1 when p= 100%. Thus,

restricting the product set is critical when customer disengagement is significant.

Other Comparisons: Following Remark 2, we also compare the performance of an approach that

re-optimizes the product set Ξ after every batch of observations (B time steps). In particular, after

B interactions, we update our posterior mean and variance on the latent customer features, and re-

solve OP(γ) with the corresponding updated objective; we also exclude the product that caused the

customer to disengage from our product set. In Figure 2, we plot the total time of engagement as a

function of the batch size B ∈ {5,10,15} (smaller B implies frequent re-optimization) and compare it

with our approach and the other benchmarks. Perhaps surprisingly, we find that frequent re-optimization

reduces engagement time. This is because frequent re-optimization can cause the posterior update on

the customer’s latent attributes (and therefore the downstream IP solution) to fluctuate significantly as

a function of the idionsyncratic noise ε in the customer response, thereby recommending worse products;

in contrast, selecting a static product set is robust to the (often large) noise in customer response. This

intuition is formalized in Proposition EC.1 in Appendix B.4.

We also test the impact of modest misspecification of our key disengagement parameter ρ (see

Appendix C.2), and find that the performance of our algorithm is robust to this uncertainty.

5.2. Case Study: Movie Recommendations

We now simulate CTS and the same benchmarks on a model calibrated with MovieLens, a publicly

available movie recommendations dataset collected by GroupLens Research. This dataset is widely used

in the academic community as a benchmark for recommendation and collaborative filtering algorithms

(see Harper and Konstan 2016, for details). Importantly, we no longer have access to the true problem

parameters (e.g., ρ); we discuss simple heuristics for estimating these parameters.

5.2.1. Data Description & Parameter Estimation The MovieLens dataset contains over 20

million user ratings based on personalized recommendations of 27,000 movies to 138,000 users. We use

a random sample (provided by MovieLens) of 100,000 ratings from 671 users over 9,066 movies. Ratings



Bastani et al.: Learning Recommendations with Customer Disengagement
24

Figure 2 Time of engagement and 95% CI (over 100 randomly generated customers) for p = 10%, when the

constrained set is reoptimized after every 5 (left), 10 (second from left), 15 (third from left) time

periods or selected a-priori (right). Fixing a static constrained set outperforms dynamic updating.

are made on a scale of 1 to 5, and are accompanied by a time stamp for when the user submitted the

rating. The average movie rating is 3.65.

The first step in our analysis is identifying likely disengaged customers in our data. We will argue that

the number of user ratings is a proxy for disengagement. In Figure 3, we plot the histogram of the number

of ratings per user. Users provide an average of 149 ratings, and a median of 71 ratings. Clearly, there

Figure 3 On left, the histogram of user ratings in MovieLens data. On right, the empirical distribution of ρ, the

customer-specific tolerance parameter, across all disengaged users for a fixed customer disengagement

propensity p= .75. This distribution is robust to any choice of p∈ (0, .75]

is high variability and skew in the number of ratings that users provide. There are two primary reasons

why a customer may stop providing ratings: (i) satiation and (ii) disengagement. Satiation occurs when

the user has exhausted the platform’s offerings that are relevant to her, while disengagement occurs
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when the user is relatively new to the platform and does not find sufficiently relevant recommendations

to justify engaging with the platform. Thus, satiation applies primarily to users who have provided many

ratings (right tail of Figure 3), while disengagement applies primarily to users who have provided very

few ratings (left tail of Figure 3).

Accordingly, we consider the subset of users who provided fewer than 27 ratings (bottom 15% of users)

as disengaged users. We hypothesize that these users provided a low number of ratings because they

received recommendations that did not meet their tolerance threshold. This hypothesis is supported

by the ratings. In particular, the average rating of disengaged users is 3.56 (standard error of 0.10)

while the average rating of the remaining (engaged) users is 3.67 (standard error of 0.04). A one-way

ANOVA test (Welch 1951) yields a F -statistic of 29.23 and a p-value of 10−8, showing that the difference

is statistically significant and that disengaged users dislike their recommendations more than engaged

users. This finding relates to our results in §2, i.e., disengagement is related to the customer-specific

relevance of recommendations made by the platform.

Estimating latent user and movie features: We need to estimate the latent product features {Vi}ni=1

as well as the distribution P over latent user attributes from historical data. Thus, we use low rank

matrix factorization on the ratings data (we find that a rank of 5 yields a good fit) to derive {Ui}mi=1 and

{Vi}ni=1. We fit a normal distribution P to the latent user attributes {Ui}mi=1, and use this to generate

new users; we use the latent product features as-is.

Estimating the tolerance parameter ρ: Recall that ρ is the minimum utility that a customer is willing

to tolerate before disengaging with probability p. In our theory, we have so far assumed that there is a

single known value of ρ for all customers. However, in practice, it is likely that ρ may be a random value

that is sampled from a distribution (e.g., there may be natural variability in tolerance among customers),

and further, the distribution of ρ may be different for different customer types (e.g., tail customer types

may be more tolerant of poor recommendations since they are used to having higher search costs for

niche products). Thus, we estimate the distribution of ρ as a function of the user’s latent attributes u0

using maximum likelihood estimation, and sample different realizations for different incoming customers

on the platform. We detail the process of this estimation next.

In order to estimate ρ for a user, we consider the time series of ratings provided by a single user with

latent attributes u0 in our historical data. Clearly, disengagement occurred when the user provided the

last rating to the platform, and this decision was driven by both the user’s disengagement propensity

p, and tolerance parameter ρ. For a given p and ρ, let tleave denote the last rating of the user, and

a1, ....atleave be the recommendations made to the user until time tleave. Then, the likelihood function of

the observation sequence is:

L(p,ρ) = p(1− p)
(
tleave−

∑(tleave−1)

i=1 1{ai∈S(u0,ρ)}
)
,
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where we recall that S(u0, ρ) defines the set of products that the user considers tolerable. Since u0 and

Vi are known apriori (estimated from the low rank model), S(u0, ρ) is also known for any given value

of ρ. Hence, for any given value of p, we can estimate the most likely user-specific tolerance parameter

ρ using the maximum likelihood estimator of L(p,ρ). In Figure 3, we also plot the overall estimated

empirical distribution of ρ for our subset of disengaged users. We see that more than 88% of disengaged

users have an estimated tolerance parameter of more than 2, i.e., they consider disengagement if the

recommended movie’s rating is less than 2 stars. As we may expect, very few disengaged users have a low

estimated value of ρ, suggesting that they have high expectations on the relevance of recommendations.

One caveat of our estimation strategy is that we are unable to identify both p and ρ simultaneously;

instead, we estimate the user-specific distribution of ρ and perform our simulations for varying values

of the disengagement propensity p. Empirically, we find that our estimation of ρ is robust to different

values of p, i.e., for any value of p ∈ (0, .75], we observe that our estimated distribution of ρ does not

change. Thus, we believe that this strategy is sound.

5.2.2. Results Similar to §5.1, we compare Constrained Thompson Sampling against our two

benchmarks (Thompson Sampling and greedy Bayesian updating) based on average customer engage-

ment time. We use a random sample of 200 products, and take our horizon length T = 100.

Figure 4 shows the customer engagement time averaged over 1000 randomly generated users (along

with the 95% confidence intervals) for all three algorithms as we vary the disengagement propensity p

from 1% to 100%. Again, we see similar trends as we saw in our numerical experiments on synthetic data

(§5.1). When p = 1% (i.e., customer disengagement is relatively insignificant), all algorithms perform

well, and CTS performs comparably. As we increase p, all algorithms achieve worse engagement, since

customers become considerably more likely to leave the platform. As expected, we also see that CTS

starts to significantly outperform the other two benchmark algorithms as p increases. For instance, the

mean engagement time of CTS improves over the engagement time of the benchmark algorithms by a

factor of 1.8 when p= 10%, by a factor of 2.14 when p= 50% and by a factor or 2.32 when p= 100%.

Thus, our main finding remains similar on this data: restricting the product set is critical when customer

disengagement is significant.

6. Discussion and Conclusions

We study the classic problem of sequential product recommendations when customer preferences are

unknown. First, using a sequence of ad campaigns from a major airline carrier, we present empirical

evidence suggesting that customer disengagement plays an important role in the success of recommender

systems. In particular, customers decide to stay on the platform based on the relevance of recommen-

dations. To the best of our knowledge, this issue has not been studied in the framework of collaborative

filtering, a widely-used machine learning technique. We formulate this problem as a linear bandit, with
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Figure 4 Time of engagement and 95% confidence intervals on MovieLens data averaged over 1000 randomly

generated customers for disengagement propensity p values of 1% (top left), 10% (top right), 50%

(bottom left), and 100% (bottom right) respectively.

the notable difference that the customer’s horizon length is a function of past recommendations. Our

formulation bridges two disparate literatures on bandit learning in recommender systems, and customer

disengagement modeling.

We show that this problem is fundamentally hard, i.e., no algorithm can keep all customers engaged.

Thus, we shift our focus to keeping a large number of customers (i.e., mainstream customers) engaged,

at the expense of tail customers with niche preferences. Unfortunately, we find that classical bandit

learning algorithms as well as simple greedy Bayesian updating perform poorly, and can fail to keep

any customer engaged. Motivated by a reduction to a scheduling problem, we propose modifying bandit

strategies by constraining the action space upfront using an integer program. We prove that this simple

modification allows strong performance (i.e., sublinear regret) for a significant fraction of customers. We

also perform extensive numerical experiments on movie recommendations data that demonstrate the

value of our approach towards improving customer engagement with the platform. Our results highlight

a necessary tradeoff with clear managerial implications for platforms that seek to make personalized

recommendations.

There are a number of practical considerations when deploying such an approach. First, our algorithm

requires additional hyperparameters to calibrate the disengagement model, beyond the standard tuning
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parameters in bandit algorithms. We propose an approach to estimate these parameters using historical

data (§5.2), and furthermore, show that modest misspecification does not significantly hurt performance

(Appendix C.2). An alternative approach may be to jointly learn these parameters on the fly while

making recommendations (see, for e.g., Li et al. 2017). Second, we build on the classic collaborative

filtering model, which does not have any side information. However, side information can be easily

accommodated into the collaborative filtering framework, e.g., through observed user/product features

(Jain and Dhillon 2013), or tensors capturing multiple outcome variables (Farias and Li 2019). Such

information, when available, can significantly speed up learning, thereby improving customer satisfaction

and retention.

More broadly, our work leads to a number of interesting directions for future research. For instance,

our disengagement model is based on customer utility thresholds. However, customer disengagement

behaviour may not be homogeneous across the platform, may change over time, or may be dictated

by external circumstances. Defining what constitutes customer disengagement, and developing empir-

ical estimation techniques for identifying customer disengagement on platforms remains an important

direction for future research. Moreover, we focus on the setting where the platform recommends a single

product to the customer at each time step. Many platforms recommend assortments of products. This

can help engage variety-seeking customers (Kahn 1995), as well as communicate more information about

the platform’s offerings and the customer’s preferences, e.g., in some cases, the assortment drives the

customer’s opinion on whether to engage with the platform (Ferreira et al. 2019). Thus, an interesting

direction is to design algorithms that offer customers subsets of products to infer the underlying cus-

tomer choice model (Chen et al. 2018, Feng et al. 2018) while accounting for customer disengagement.

Finally, while we provide a numerical study calibrated on real data, a field experiment could shed more

light into the value of our approach in practice.
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Online Appendix
Learning Personalized Product Recommendations with

Customer Disengagement

Appendix A: Airline Campaign Details

Appendix A.1 overviews how we trained the personalized relevance score in §2, and Appendix A.2 argues

why omitted variables do not bias our estimated treatment effects.

A.1. Collaborative filtering

Recall from our preliminaries in §3 that we wish to recover matrix A= U>V . Here, we interpret U>i Vj as

the utility of customer i∈ [m] for product j ∈ [n]. Given a set I of observed utilities (noisy entries of A), the

objective is to recover estimates of U ∈Rd×m and V ∈Rd×n so that we can infer unobserved entries of A (to

make new recommendations). This can be written as the following error minimization problem

min
U,V

∑
(i,j)∈I

(Aij −U>i Vj)2 . (EC.1)

Problem (EC.1) is typically non-convex due the bilinearity of the objective function. Alternating minimization

— where we iteratively fix either U or V and optimize over the other quantity — is a popular approach

because of its ease of implementation, strong performance, and theoretical guarantees. In particular, when

the observed entries of A are distributed uniformly at random, alternating minimization recovers A with

O(nd4.5 log(n)) observations (Jain et al. 2013).

We use a Python implementation3 of alternating minimization for our collaborative filtering estimation

throughout the paper. Following standard practice, we tune the rank of the underlying model on a held-

out validation set. Although we do not have access to additional information on customers (beyond their

previous clicks, that we take to be the noisy entries of A), such information can be easily accommodated in

collaborative filtering. For instance, one can incorporate user/product features (see, for e.g., Jain and Dhillon

2013), or multiple outcome variables via tensors (see, for e.g. Farias and Li 2019).

A.2. Omitted variable bias

We do not control for a number of customer-specific attributes (e.g., customer loyalty tier/status, unobserved

travel preferences) due to data limitations. To assuage concerns about omitted variable bias, we now provide

an econometric argument that customer-specific omitted variables will not bias our treatment effect estimate.

For simplicity, consider a linear model given by

yi = β1ti +β2xi + εi ,

where yi is the dependent variable, ti is the treatment, xi is an omitted explanatory variable, εi is idiosyncratic

noise, and the scalar β1 is the treatment effect of interest. When xi is missing from the regression specification,

the OLS estimator of β1 is given by

∂

∂t
E[y|t] =

∂

∂t
E[β1t+β2x+ εi|t] =

∂

∂t
[β1t+E[β2x|t]] = β1 +β2

∂

∂t
E[x|t] .

3 https://spark.apache.org/docs/latest/ml-collaborative-filtering.html
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As expected, if the omitted variable x is uncorrelated with the outcome y, then β2 = 0 and we obtain an

unbiased estimate of the treatment effect β1. But, in practice, β2 is unlikely to be 0 since customer-specific

preferences likely affect the probability of a click outcome. Instead, we argue that the omitted variable x is

uncorrelated with the treatment t, in which case ∂
∂t
E[x|t] = 0 so we still obtain an unbiased estimate of the

treatment effect β1 even if β2 6= 0.

The airline decided the destinations that they will promote before the start of the first campaign. Thus,

there is no correlation between customer-specific preferences (such as loyalty tier/status or travel history)

with the recommended destinations, i.e., the relevance score of the 6th campaign for a customer is uncorre-

lated with unobserved customer-specific preferences. Hence, while these omitted variables are likely predictive

of the customer response, they do not bias the estimated treatment effect.

Appendix B: Proofs of Main Results

This section provides the proofs for all results in the paper.

B.1. Lower bounds

First, we prove hardness by constructing a simple instance where linear regret is unavoidable.

Proof of Proposition 1: Consider WLOG the case when d = 2. Then, u0 ∼ N (0, σ2I2). Furthermore,

V1 = [1,0] and V2 = [0,1]. Clearly, Product 1 is optimal when u01
> u02

and vice versa. For any ρ, consider

the following events: E1 = {u01
< ρ< u02

},and E2 = {u02
< ρ< u01

} . Then on E1, recommending product 1

leads to customer disengagement with probability p and on E2, recommending product 2 leads to customer

disengagement with probability p. But, C := P(E1) = P(E2) = P(Z < ρ/σ)(1 − P(Z < ρ/σ)) > 0, where Z

denotes the standard normal random variable and the last inequality follows since ρ is finite by assumption.

Any policy π has two options at time 1: either to recommend product 1 or to recommend product 2. First

consider the case when a1 = 1 and notice that

Eu0∼P [Rπ(T,ρ, p,u0)]≥
T∑
t=1

rt(ρ, p,u0 ∈ E1).P (E1)≥ T ·P (E1) · p=CpT = Ω(T ) .

Similarly, when a1 = 2, Eu0∼P [Rπ(T,ρ, p,u0)]≥CpT . Hence,

inf
π∈Π

sup
ρ>0

EU0∼P [Rπ(T,ρ, p,U0)] =C · p ·T = Ω(T ) .

The proof follows similarly for any d > 2 since the probability of disengagement continues to be strictly

positive in the initial round. �

Before we prove Proposition 2, we prove a lemma that relates the confidence width of the mean reward

of product V (‖V ‖2
X−1
t

) and shows that this width shrinks at a rate faster than the confidence width of the

estimation of the gap between reward from V and the optimal product (∆V ).

Lemma EC.1. Let π be a consistent policy and let a1, .., at be actions taken under policy π. Let u0 ∈Rd

be a realization of the random user vector, U0 ∼P, such that there is a unique optimal product, V∗ amongst

the set of feasible products. Then ∀ V ∈ {V1, ....Vn}/ V∗,

lim sup
t→∞

log(t)‖V ‖2
X−1
t
≤ ∆2

V

2(1− ν)
,

where ∆V = u>0 V∗−u>0 V and Xt =E
[∑T

l=1 ala
′
l

]
.
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Proof of Lemma EC.1: The proof strategy is similar to that of Theorem 1 in Lattimore and Szepesvari

(2016) with two main steps. In Step 1, we show that lim supt→∞ log(t)‖V −V∗‖2X−1
t

≤ ∆2
V

2(1−ν)
. Then, in Step

2, we connect this result to the matrix norm on the features of V which leads to the final result. We skip

the details for the sake of brevity and refer the interested readers to Lattimore and Szepesvari (2016). �

Proof of Proposition 2: Part 1 (Bandit Failure): Since, this result is over all possible product feature

settings, we consider the following setting: Let µ be the identity function (linear case), and there be d total

products in Rd, with latent product features Vi = ei, the ith basis vector. By assumption |S(u0, ρ)| < d.

We will show that any consistent policy, π, recommends products outside of the customer’s feasibility set

infinitely often. Note that for any realization of u0, one can increase ρ and make it sufficiently large so

that |S(u0, ρ)|< d. Customer disengagement thus follows directly since there is a positive probability, p, of

customer leaving the platform whenever a product outside the customer’s feasibility set is offered.

Let us assume, by contradiction, that there exists a policy π that is consistent and offers products inside

the feasible set infinitely often. This implies that there exists t̄ such that ∀t > t̄, at ∈ S(u0, ρ). Now under

the stated assumptions of the simplified setting, there are d products in total (n= d) and the feature vector

of the ith product is the ith basis vector. Further let uo, the unknown consumer feature vector, and ρ, the

tolerance threshold parameter be such that WLOG, S(u0, ρ) = {2,3...d} (follows by Definition (1)). That is,

only the first product is outside of the feasible set. Also let,

Rπt =

T
π
1 (t) 0 . . .
...

. . .

0 T πd (t)

 ,
where Tj(t) = E

[∑t

f=1 1{aπf = j}
]
. Tj(t) is the total number of times the jth product is offered until time t

under policy π. Next consider the following:

lim supt→∞ log(t)‖e1‖2X−1
t

= lim supt→∞ log(t)e>1 X
−1
t e1 = lim supt→∞ log(t)e>1 E

[
t∑

f=1

afa
>
f

]−1

e1

= lim supt→∞ log(t)e>1 [Rt]
−1
e1 = lim supt→∞ log(t)

(
1

T1(t)

)
≥ lim supt→∞ log(t)

(
1

T1(t̄)

)
=∞ .

(EC.2)

Where the second to last inequality follows from the fact that ∀t > t̄, π recommends products inside the

feasible set, S(u0, ρ), which does not contain product 1. Furthermore, T1(t̄) = T1(t̄+ 1) = T1(t̄+ 2) = ....=

limn→∞ T1(t̄+n). For any finite ∆V1
, and 0< ν < 1, we have that,

lim supt→∞ log(t)‖e1‖2X−1
t
≥ ∆2

1

2(1− ν)
.

which implies that ∃ai in the action space such that the condition of Lemma EC.1 is not satisfied. Hence,

we have show that there exists no consistent policy that recommends products inside of the feasible set of

products infinitely often. Now since ρ is large and p is positive, customers are guaranteed to disengage from

the platform eventually. This leads to a linear rate of regret for all customers. Hence,

sup
π∈ΠC

inf
{Vi}ni=1

FSCπ(ρ, p,T ) = 0 .
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Part 2 (Greedy Failure): Recall, that there are d total products and attribute of the ith product is the ith

basis vector. Furthermore, the prior is uninformative. That is, the first recommended product is selected at

random. Let us assume, WLOG, that the GBU policy picks product 1 to recommend. We have two cases to

analyze: (i) product 1 is sub optimal for the realized latent attribute vector, u0, (ii) product 1 is optimal for

the realized latent attribute vector, u0. Let us consider case (i) when product 1 is suboptimal. In this case, if

we let ρ to be large enough (ρ> u>0 V1), so that the customer leaves with probability p in the current round.

Hence, for all such customers

Rπ(T,ρ, p,u0)≥ T · p= pT .

Next, we consider the customers for which product 1 is optimal. In this case, the customer leaves with

probability p when the greedy policy switches from the initial recommendation to some other product outside

of the relevance threshold. This would again lead to a linear rate of regret. Let

Et
i = {V >1 ût−V >i ût > 0} .

Et
i denotes the event that the initially picked product is indeed better than the ith product in the product

assortment at time t. Similarly, let Gt to be the event that the GBU policy switches to some other product

from product 1 by time t. Then,

P(Gt) = P
(
∪i=2..n ∪j=1..t (Ej

i )
c
)
≥ P

(
(Ej

i )
c
)
, ∀i= 2, .., n,∀j = 1, .., t .

We will lower bound the probability of product 1 not being the optimal product for some time t under the

GBU policy. Since we are dynamically updating the estimated latent customer feature vector, the probability

of switching depends on the realization of εt, the idiosyncratic noise term that governs the customer response.

We will first consider the case of two products (d = 2). Furthermore, we will analyze the probability of

switching from product 1 to product 2 after round 1 ((E1
2)c). First note that, Et

i = {V t
1 ût−V >i ût ≥ 0}, which

implies

(Et
i )
c = {V t

i ût−V >1 ût > 0}= {(Vi−V1)
>

(ût−u0)>∆i} ,

where ∆i = V >1 u0−V >i u0. Now, note that ût =
[∑t

f=1 afa
>
f + ξ2

σ2 Id

]−1

[a1:t]
>
Yf=1:t. Hence,

û1 =

[
1 + ξ2

σ2 0

0 ξ2

σ2

]−1 [
Y1 0
0 0

]
=

[
σ2Y1

σ2 + ξ2
,0

]
.

Therefore, we are interested in the event{
σ2Y1

σ2 + ξ2
< 0

}
= {Y1 < 0}= {u01

+ ε1 < 0}= {u01
+ ε1 < 0} .

Now note that for any realization of u0, there is a positive probability of the event above happening. Hence,

let P(ε1 <−u01
) =C4 > 0 . This implies that P(Gt)≥C4. Following the same regret argument as before, we

have that for all such customers, RGBU(T,ρ, p,u0) =C4 · T . The argument for d > 2 follows similarly since

with positive probability, the GBU policy would either get stuck at a sub-optimal arm or would switch to a

sub-optimal arm. Hence,

sup
π∈ΠC

inf
{Vi}ni=1

FSCπ(ρ, p,T ) = 0 .

�
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B.2. Optimal policy for scalar case

Proof of Lemma 2: We will suppress the dependence of Kopt and Ksub on st for ease of notation in what

follows. Assume WLOG that arm 1 belongs to Kopt and arm 2 belongs to Ksub. We prove the result above by

showing an upper bound on the index of arm 1 and a lower bound on the Gittin’s index of arm 2. Consider

the index of arm (1) and note that

ν1(s) = max
τ≥1

E

[∑τ

j=0 Y1(Sj) exp
(
−
∑j

k=0 Tk(Sk,1)
) ∣∣∣∣∣S0 = s

]

E

[
1− exp (−

∑τ

k=0 Tk(Sk,1))

∣∣∣∣∣S0 = s

] (EC.3)

≥
E

[∑τ ∗1(s)
j=0 Y1(Sj) exp

(
−
∑j

k=0 Tk(Sk,1)
) ∣∣∣∣∣S0 = s

]

E

[
1− exp

(
−
∑τ ∗1(s)

k=0 Tk(Sk,1)
)∣∣∣∣∣S0 = s

] . (EC.4)

Next, notice that for any t < τ∗1(s), q̄t(1) > ρ . Furthermore, note that the expected gold mined for any

t≤ τ∗1(s) is greater than ρ. In particular, for any t≤ τ∗1(s), E[Y1(St)] = q̄t(1)>ρ . Re-evaluating the numerator

of the RHS in (EC.3), we have that

E

τ ∗1(s)∑
j=0

Y1(Sj) exp

(
−

j∑
k=0

Tk(Sk,1)

)∣∣∣∣∣S0 = s

≥E

τ ∗1(s)∑
j=0

ηjρ

= ρE

τ ∗1(s)∑
j=0

ηj

 .
Similarly, focusing on the numerator of the RHS in (2), we have that

E

1− exp

− τ ∗1(s)∑
k=0

Tk(Sk,1)

∣∣∣∣∣S0 = s

=E

1−
τ ∗1(s)∏
j=1

η

=E
[
1− ητ ∗1(s)

]
.

Hence,

ν1(s)≥ ρ
E
[∑τ ∗1(s)

j=0 ηj
]

E
[
1− ητ ∗1(s)

] ≥ ρE
τ ∗1(s)∑
j=0

ηj

≥ ρη ,
where the last inequality follows by assumption that τ∗1(s)> 0. Note that the above analysis was independent

of the arm’s index. Hence, ∀i ∈ Kopt, νs ≥ ρη =⇒ νopt ≥ ρη , where the last inequality follows from the

definition of νopt.

Next we consider the index of arm 2 and prove an upper bound on its value. First note by definition that

ν2(s) = max
τ≥1

E

[∑τ

j=0 Y2(Sj) exp
(
−
∑j

k=0 Tk(Sk,2)
) ∣∣∣∣∣S0 = s

]

E

[
1− exp (−

∑τ

k=0 Tk(Sk,2))

∣∣∣∣∣S0 = s

] . (EC.5)

Let τ∗ be the optimal index in the expression above. We will relate τ∗ to τ̄∗2 . To show an upper bound,

we will analyze two cases: (i) τ∗ ≥ τ̄∗2 or (ii) τ∗ ≤ τ̄∗2 . We start by considering the case (i) when τ∗ ≥ τ̄∗2 .

Rewriting (EC.5), we have that

ν2(s) =

E

[∑τ̄∗2
j=0 Y2(Sj) exp

(
−
∑j

k=0 Tk(Sk,2)
)

+
∑τ∗

j=τ̄∗2 +1 Y2(Sj) exp
(
−
∑j

k=0 Tk(Sk,2)
) ∣∣∣∣∣S0 = s

]

E

[
1− p̃τ̄∗2 ητ∗

∣∣∣∣∣S0 = s

] . (EC.6)
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Let us consider the numerator of (EC.6) and note that

E

 τ̄∗2∑
j=0

Y2(Sj) exp

(
−

j∑
k=0

Tk(Sk,2)

)≤ τ̄∗2∑
j=0

ρ(p̃η)j ≤ ρ p̃η

1− p̃η
,

where the first inequality holds directly by the definition of τ̄∗2 and Tk(Sk,2). And the second inequality holds

by evaluating the sum of the geometric series. Next, consider

E

 τ∗∑
j=τ̄∗2 +1

Y2(Sj) exp

(
−

j∑
k=0

Tk(Sk,2)

)≤E

 ∞∑
j=τ̄∗2 +1

Y2(Sj) exp

(
−

j∑
k=0

Tk(Sk,2)

)
≤E

 ∞∑
j=τ̄∗2 +1

exp

(
−

j∑
k=0

Tk(Sk,2)

)
=E

 ∞∑
j=τ̄∗2 +1

p̃τ̄
∗
2 ηj

≤E
[
p̃τ̄
∗
2

η

1− η

]
.

where the first inequality follows because we are summing up positive numbers, second inequality follows

because rewards are upper bounded by 1, and the last inequality follows by summing up the infinite geometric

series. Hence, combining the above two bounds, we get an overall upper bound on the numerator of (EC.5)

by:

E

[
τ∗∑
j=0

Y2(Sj) exp

(
−

j∑
k=0

Tk(Sk,2)

)∣∣∣∣∣S0 = s

]
≤ ρp̃η

(1− p̃η)
+E

[
p̃τ̄
∗
2 η

(1− η)

]
.

Finally, focusing on the denominator of (EC.5), we have that E
[
1− p̃τ̄∗2 ητ∗

]
≥ E [1− p̃] = 1− p̃ . Combining

the upper bound on the numerator and the lower bound on the denominator, we get that

ν2(s)≤ 1

1− p̃

(
ρp̃η

(1− p̃η)
+E

[
p̃τ̄
∗
2

η

1− η

])
.

Note that so far we have only used the condition that τ̄∗2 > 0. Since all arms j ∈ Ksub also satisfy this

assumption, we have that ∀j ∈Ksub,

νj(s)≤
1

1− p̃

(
ρp̃η

(1− p̃η)
+E

[
p̃τ̄
∗
2

η

1− η

])
=⇒ νsub ≤

1

1− p̃

(
ρp̃η

(1− p̃η)
+E

[
p̃τ̄
∗
2

η

1− η

])
.

Finally, recall by assumption that arms belonging to Ksub also satisfy

E
[
p̃τ̄
∗
2
]
≤ ρ(1− η)

η

(
pη− p̃η

1− p̃η

)
.

Rearranging, we get that

νsub ≤
1

1− p̃

(
ρ

p̃η

1− p̃η
+E

[
p̃τ̄
∗
2

η

1− η

])
≤ ρη≤ νopt .

Hence, we have shown that νsub(s)≤ νopt(s). Since the optimal policy is an index policy (by Lemma 1), we

have that arms in Kopt are preferred over arms in in Ksub, proving the final result. The case of τ∗ < τ̄∗2 (s)

follows similarly, since by assumption τ̄∗2 (s)> 0. We skip the details for the sake of brevity.
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Proof of Theorem 1: Assume WLOG that |Kopt(s0)|= 1. We will show that the single arm in Kopt(s0) is

always preferred over other arms in Ksub(s0). The result would follow without loss of generality since at any

time if there are more than one arms in Kopt(s0), they are all preferred over arms in Ksub(s0). Furthermore,

no arm can leave Kopt without being pulled at least once. Hence, even if the size of arms in |Kopt(s0)|> 1,

either arms start to drop off from the set and eventually the set contains only a singe arm, or they continue

staying in the set over time. In either case, arms in Ksub(s0) would be eventually compared to arms in Kopt(s0)

before being pulled. Hence, in what follows we will assume that the first arm is contained in Kopt(s0).

Recall that the initial state, and Lemma 2 ensures that arm 1 will be chosen in the first time period.

Hence, after the first pull, only the state space of the first arm changes and not of any other arm. Next,

notice again by Lemma 1, that if S2(1) is such that τ∗1(S2(1))> 0 , then we can use Lemma 2 to show that

arm 1 will still be preferred over arms in Ksub(S2) at time 2. This follows because the arm’s state for all

arms in Ksub(s0) have not changed so far. This argument continues to hold for all time t. Hence, if a switch

from arm 1 to another arm in Ksub(St) happens, arm 1 must leave Kopt(St) at such time t. Conversely, if

τ∗1(St)> 0, ∀t= 1, ..∞ , then arm 1 never leaves Kopt(St) and is always the preferred arm. We will show a

lower bound on the probability of this event. First recall by definition that

τ∗1(st) = min{t : q̄t(1)≤ ρ|S0(i) = s} ,

denotes the first time when the estimated probability of success of arm 1 drops below the threshold ρ, after

starting in state s. Then, trivially τ∗1(st) equals 0 when q̄t(1)≤ ρ. But at any time t, q̄t(1) = α1+Kt
α1+β1+Ft

. Here,

Kt and Ft denote the total successes and total pulls of arm 1. Hence, at time t, if

α1 +Kt/α1 +β1 +Ft ≤ ρ =⇒ Kt/Ft− θ1 ≤ ρ+ ρ/Ft (α1 +β1)−α1/Ft− θ1 .

Hence, at any time t, the estimated probability of success to be below threshold ρ is given by:

P (Kt/Ft− θ1 ≤ (ρ− θ1) +α1/Ft (ρ− 1) +β1/Ft) .

Let β1 = κ̄α1, for some κ̄ < 1 and assume that 1− ρ− κ̄ > 0. Then,

P (Kt/Ft− θ1 ≤ (ρ− θ1) +α1/Ft (ρ+ κ̄− 1))≤ P (θ1−Kt/Ft ≥ (θ1− ρ))≤ exp
(
−Ft(θ1− ρ)2

)
, (EC.7)

where the last inequality follows by a direct application of Hoeffding’s inequality for bounded random vari-

ables. Let Et = {q̄t(1)>ρ}. Then we are interested in lower bounding the probability of A :=∩∞t=1Et. But

P (A) = 1−P (Ac) = 1−P ((∩∞t=1Et)c) = 1−P (∪∞t=1(Et)c)

≥ 1−
∞∑
t=1

P((Et)c)≥ 1−
∞∑
t=1

exp
(
−Ft(θ1− ρ)2

)
≥ 1−

∞∑
t=1

exp
(
−t(θ1− ρ)2

)
= 1− exp(−(θ1− ρ)2)

1− exp(−(θ1− ρ)2)
=

1− 2 exp(−(θ1− ρ)2)

1− exp(−(θ1− ρ)2)
,

where the first inequality follows using union bound, the second inequality follows by (EC.7) and the second

last equality follows by using the geometric sum of infinite series. This proves the final result since θ1 ≥ θ∗opt.
�
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B.3. Proofs for Constrained Bandit

First, we prove Lemma 3, which shows that the FSC of the Constrained Bandit is strictly positive, even in

the worst case over all product sets.

Proof of Lemma 3: Consider any feasible ρ> 0 and let γ0 be the maximum constraining parameter such

that only a single product remains in the constrained exploration set. Than for any γ ≤ γ0 OP(γ) picks a

single product (̃i) in the exploration phase. Now for any such γ consider

Wλ,γ := {u0 : V >
ĩ
u0 > max

i−1,..,n,i6=ĩ
V >i u0} .

Then we have that ∀u0 ∈ Wλ,γ , customers are going to continue engaging with the platform since the

recommended product is the corresponding optimal product. Next, since the prior is a multivariate normal,

we have that P (Wλ,γ)> 0. For example, if Vi is the ith basis vector and u0 is multivariate normal with prior

mean of 0 across all dimensions. So, the probability of sampling a u0 such that u0
ĩ
>u0j , ∀j = 1, .., d, j 6= ĩ

has a positive measure under the prior assumption. We claim that for any ρ, the regret incurred from this

policy will be optimal. Consider two cases: (i) When ρ is such that their is more than 1 product within

the customer’s relevance threshold. That is, |S(u0, ρ)| > 1 (ii) When there is a single product within the

customer’s tolerance threshold, ρ. That is, |S(u0, ρ)|= 1. In both cases, ĩ, which is the only product in the

exploration phase, is contained in |S(u0, ρ)|. That is, ∀u0 ∈Wλ,γ̃ , ĩ∈ S(u0, ρ). Hence, there are no chances of

customer disengagement if product ĩ is offered to the customer. Furthermore, regret over all such customers is

in fact 0 since the platform recommends their optimal product. Therefore, for any ρ, FSCCB(λ,γ)(ρ, p,T )> 0,

which proves the final result. �

Next, we prove Theorem 2, upper bounding the regret among some (mainstream) customers. We begin by

defining Lt,ρ,p, an indicator that captures whether the customer is still engaged at time t:

Definition EC.1. Let,

Lt,ρ,p =

{
1 customer engaged until time t ,

0 otherwise.

Clearly, 1{LT,ρ,p = 1}= ΠT
t=11{Υt = 0} , where we recall that Υt is the disengagement decision of the cus-

tomer at time t. We first show that as T →∞, LT,ρ,p = 1 for some customers, i.e., they remain engaged.

Next, we show that most engaged customers are eventually matched to their preferred product.

Proof of Theorem 2: We will prove the above result in three steps. In the first step we will lower bound

the probability that the constrained exploration set, Ξ, contains the optimal product for an incoming vector.

In the second step we will lower bound the probability of customer engagement over the constrained set.

Finally, in the last step, we use the above lower bounds on probabilities to upper bound regret from the

Constrained Bandit algorithm.

Step 1 (Lower bounding the probability of not choosing the optimal product for an incoming customer in

the constrained set): Let, Eno−optimal, be the event that the optimal product, V∗ for the incoming user is not

contained in Ξ. Also let ĩ= arg maxV ∈[−1,1]d ū
>V , denote the attributes of the prior optimal product. Notice

that Vĩ = ū since ‖ū‖2 = 1. Also recall that V∗ = arg maxV ∈[−1,1]d u
>
0 V , denotes the current optimal product

which is unknown because of unknown customer latent attributes. We are interested in P (Eno−optimal) =
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P (V∗ 6∈Ξ) . In order to characterize the above probability, we focus on the structure of the constrained set,

Ξ. Recall that Ξ is the outcome of Step 1 of Constrained Bandit (Algorithm 2) and uses OP(γ) to restrict

the exploration space. It is easy to observe that Ξ in the continuous feature space case would be centred

around the prior optimal product vector (ū) and will contain all products that are at most γ away from

each other. We are interested in characterizing the probability of the event that u0 6∈ [ūl, ūr] where ūl and ūr

denote the attributes of the farthest products inside a γ constrained sphere. Simple geometric analysis yields

that ū and ūl are d̄=

√
2
(

1−
√

(1− γ2/4)
)

apart. The distance between ū and ūr follows symmetrically.

Having calculated the distance between ū and ūl, we are now in a position to characterize the probability of

Eno−optimal. But

P (Eno−optimal) = P (V∗ 6∈Ξ) = P
(
‖u0− ū‖2 ≥ d̄

)
.

Note by Holder’s inequality that, d̄≤ ‖u0− ū‖2 ≤ ‖u0− ū‖1 , which implies that,

P (Eno−optimal) = P
(
‖u0− ū‖2 ≥ d̄

)
≤ P

(
‖u0− ū‖1 ≥ d̄

)
.

Note that u0 ∼N (ū, σ
2

d2
Id). Using Lemma EC.2 in Appendix D, we have that,

P
(
‖u0− ū‖1 ≤ d̄

)
≥ 1− 2d exp

(
−
(

1−
√

(1− γ2/4)/σ
))

,

which results in a lower bound.

Step 2 (Lower bounding the probability of customer disengagement due to relevance of the recommendation):

Recall that customer disengagement decision is driven by the relevance of the recommendation and the

tolerance threshold of the customer. Hence, letting C2 = (d/σ) (ρ/(1− γ)), and ūmax = maxi=1,..,d |ūi|, notice

P(u>0 ai ≥ ρ) = P(u>0 u0−u>0 u0 +u>0 ui ≥ ρ) = P(u>0 (u0−ui)<u>0 u0− ρ)

≥ P
(
‖u0‖2 <

u>0 u0− ρ
γ

| u0, ui ∈Ξ

)
= P

(
‖u0‖22− γ‖u0‖2− ρ> 0 | u0, ui ∈Ξ

)
= P (‖u0‖2(1− γ)− ρ> 0 | u0, ui ∈Ξ) = P (‖u0‖2 >ρ/(1− γ) | u0, ui ∈Ξ)

≥ P (|umax0 | ≥ ρ/(1− γ) | u0, ui ∈Ξ)≥ P ((umax0 − ūmax)≥ ρ/(1− γ) | u0, ui ∈Ξ)

≥ (
√

4 +C2
2 −C2) exp

(
−C2

2/2
)
/2
√

2π ,

where the last inequality follows by the lower bound on tail probabilities of standard normal random variables

(Duembgen 2010). This in-turn shows that with probability at least (
√

4 +C2
2 − C2) exp (−C2

2/2)/2
√

2π,

customers will not leave the platform because of irrelevant product recommendations. We let such latent

attribute realizations be denoted by the event Erelevant.
Step 3 (Sub-linearity of Regret): Recall, by definition, that

rt(ρ, p,u0) = (µ(u>0 V∗)−µ(u>0 at))1{Lt,ρ,p = 1}+µ(u>0 V∗)1{Lt,ρ,p = 0}

= (µ(u>0 V∗)−µ(u>0 at)) +µ(u>0 at)(1−Π>t=11{Υt = 0})

Next, focusing on cumulative regret and taking expectation over the random customer response on quality

feedback (ratings), we have that,

EU0∼P
[
RCB(T,ρ, p,u0)

]
=EU0∼P

[
T∑
t=1

rt(ρ, p,u0)

]
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≤E

[
>∑
t=1

(µ(u>0 V∗)−µ(u>0 at)) +µ(u>0 at)(1−Π>t=11{Υt = 0})

]

=

T∑
t=1

E
[
(µ(u>0 V∗)−µ(u>0 at))

]
+E

[
µ(u>0 at)

(
1−Π>t=11{Υt = 0}

)]
.

Note that conditional on fraction w of customers, we have that these customers would never disengage from

the platform due to irrelevant personalized recommendations. Hence, 1−Π>t=11{Υt = 0}= 0 , Hence,

RCB(λ,γ)(T,ρ, p,u0|u0 ∈ Erelevant) =

T∑
t=1

(µ(u>0 V∗)−µ(u>0 at)) .

Now notice that our selection of the upper confidence around û depends on the link function µ. If µ is

not the identity function than, our selection is the same as that of the GLM-UCB Algorithm of Filippi et al.

(2010). Hence, following Theorem 2 in Filippi et al. (2010) , we have that

RCB(λ,γ)(T,ρ, p,u0)≤ C̃d log(sT )
√

2T log(2dT ) = Õ
(√

T
)
,

where C̃ := (d+ 1)Ymax +
(

2
√

3 + 2 log(1 + 2L2/λ)κµYmax

)
/cµ . Otherwise if µ is linear, then our selection

of the arm follows the OFUL algorithm of Abbasi-Yadkori et al. (2011) whose regret is given by

RCB(λ,γ)(T,ρ, p,u0|u0 ∈ Erelevant)≤ 5
√
Tdlog (λ+TL/d)

(√
λ(d̄+ 1) + ξ

√
log(T ) + dlog (1 +TL/λd)

)
= Õ

(√
T
)
.

where we have used that ‖u0‖2 ≤ d̄+ 1 by step 1. This proves the final result. �

B.4. Dynamic updating of constrained set

Following Remark 2, we now analytically construct a problem instance to prove that dynamically updating

the constrained product set can be outperformed by a fixed initial product selection. Let UCB−R(ρ,p) denote

the re-optimizing policy with batch size B = 1.

Proposition EC.1. Consider d = 2 with 3 products and let u0 ∼ N (ū, I2). Also let Ė = {u0 : u0 ∈

UCB(ρ,p) & u0 /∈UCB−R(ρ,p)} denote the set of user realizations for which the static product set outperforms

the dynamically updated product set. Then,

inf
Vi,ρ,p,ū

Pu0∼P(Ė)> 0 .

Proof of Proposition EC.1: We will prove this result by constructing a setting where the initial product

selection outperforms dynamic updating of the constrained set. Let the prior mean on user latent features be

ū= [1,1/2] and note that the prior variance is given by I2. Let product features be given by V1 = [1,0], V2 =

[0,1], V3 = [−1/
√

2,1/
√

2]. Let ρ and γ be selected so that at most two products remain in the constrained

set and 1 of the available products is irrelevant for the customer. Finally, let µ(x) = x with error distributed

as N (0,1). Then, clearly our static constrained set Ξ = {1,2}. Note that for for any customer realization

with both components positive (u01 > 0 & u02 > 0), this product set is optimal; i.e., product 3 is irrelevant

and product 1 and 2 are relevant. Now, consider the utility of such a customer realization under the dynamic
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updating policy. Let ût denote the posterior mean on customer features at time t. After round 1, the posterior

mean is given by

û1 =
[
I2 + [a>1 a1]

]−1[
ū+ a>1 Y1

]
.

Given the prior on customer features, it is easy to observe that the first recommendation will be Product 1.

Hence, ût = [1/2 + Y1/2,1/2]. Thus, the posterior mean only shifts in the first component while the second

component remains the same. Furthermore, Y1 = u01
+ ε, where u01

> 0 is the real unknown user feature in

dimension 1. Now consider the event E = {ε <−(1 + u01
)}. Under this event, the posterior mean becomes

negative in dimension 1 and Product 1 becomes the least relevant product. Hence, dynamically updating

the constrained set will lead to an exclusion of Product 1 (a relevant product) and an inclusion of Product 3

(an irrelevant product) from the updated set. Consequently, in round 2, there is a positive probability that

the customer disengages from the platform if Product 3 is recommended. In contrast, with the fixed product

set, the customer would remain engaged throughout the time horizon, since all recommendations would be

restricted to the set of relevant products ({1,2}). This proves the result. �

The construction in Proposition 1 shows that re-optimizing the constrained set does not always improve

performance relative to a static product set; again, this is because noise in customer response can cause

fluctuations to the product set that are harmful for engagement. Our numerical results in §5.1 complement

this result in more general settings.

Appendix C: Practical Considerations

We now discuss a number practical considerations when using the Constrained Bandit. C.1 provides guidance

on how to select the set diameter parameter γ to constrain exploration; C.2 shows that our algorithm is

robust to modest misspecifications in the model parameters; C.3 shows that our results remain qualitatively

similar when we only have distributional information on the model parameters (γ and ρ) across the customer

population; C.4 shows that our algorithm still provides value when customers only temporarily disengage.

C.1. Selecting set diameter γ

We proved earlier that the Constrained Bandit algorithm achieves sublinear regret for a large fraction

of customers. This fraction depends on the constrained threshold tuning parameter γ and other problem

parameters (see Theorem 2). In this section, we explore this dependence in more detail and approximate

the γ that maximizes the fraction of satisfied customers. First note that Step 2 in the analysis of Theorem

3 can be updated to show an explicit dependence on the prior on user latent features. In particular, letting

ūmax := maxi=1,..,d ūmaxi , we can show that when 1 > γ > 1− ρ/ūmax, then the fraction of customers who

remain satisfied with the platform is lower bounded by(
1− 2d exp

(
−
(

1−
√

1− γ2/4
)
/σ
))(

(
√

4 +C2
2 −C2) exp

(
−C2

2/2
)
/2
√

2π
)
,

where C2 = (d/σ) (ρ/(1− γ)− ūmax). Otherwise, when γ ≤ 1−ρ/ūmax, then the fraction of engaged satisfied

customers is lower bounded by .5
(

1− 2d exp
(
−
(

1−
√

1− γ2/4
)
/σ
))

. Now notice that this is an increasing

function of γ. Hence, when ρ≤ ūmax, we select

γ∗ ≈ 1− ρ/ūmax > 0 .
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When ρ> ūmax, we choose the solution to

γ∗ ≈ arg max
0≤γ≤1

(
1− 2d exp

(
−
(

1−
√

1− γ2/4
)
/σ
))(

(
√

4 +C2
1 −C1) exp

(
−C2

1/2
)
/2
√

2π
)
.

The problem above has no closed form solution but it is a single parameter optimization problem that can

be solved using numerical optimization.

C.2. Robustness to misspecification of disengagement parameters

In Figure EC.1, we compare the performance of the CTS algorithm on the time of engagement when the

tolerance threshold ρ is under-estimated by 5% (left), correctly estimated (center) and over-estimated by

5%. We find that the CTS algorithm is robust to misspecification in both cases, but over-estimation of ρ is

preferable to under-estimation. Hence, when uncertain, we suggest selecting a larger value of the tolerance

threshold.

Figure EC.1 Performance of the CTS algorithm on the time of engagement metric when the tolerance threshold

is under-estimated by 5% (left), correctly estimated (center) and over-estimated by 5%. We find

that the CTS algorithm is relatively robust to overestimation but under-performs when ρ is under-

estimated.

C.3. Prior distribution on customer tolerance and disengagement propensity

In practice, the disengagement parameters ρ and p may vary by customer; we now extend to the case where

each customer’s disengagement parameters are sampled from a known joint distribution ḟ(ρ, p). Let fp denote

the marginal distribution of the disengagement propensity and fρ denote the marginal distribution of the

relevance threshold. We assume that disengagement is salient for all customers: i.e fp(0) = 0. Since Step 1 of

Theorem 2 is only dependent on the size of the constrained set, the analysis remains the same as before. Step

2 of the analysis estimates a lower bound on the probability of engaged customers and naturally depends on

the distribution of ρ. We re-evaluate this probability for this modified setting.

Step 2 (Lower bounding the probability of customer disengagement due to relevance of the recommenda-

tion): Recall that customer disengagement decision is driven by the relevance of the recommendation and
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the tolerance threshold of the customer. Noting that both have prior distributions, and letting C1(x) =

(d/σ) (x/(1− γ)), we have that

Pu0,ρ(u
>
0 ai ≥ ρ)≥ Pu0,ρ (‖u0‖2(1− γ)− ρ> 0 | u0, ui ∈Ξ) = Pu0,ρ (‖u0‖2 >ρ/(1− γ) | u0, ui ∈Ξ)

≥
∫
x,y

Pu0,ρ (|umax0 | ≥ x/(1− γ)− ūmax) ḟρ,p(x, y)dxdy≥
∫
x

Pu0,ρ (|umax0 | ≥ x/(1− γ)− ūmax)fρ(x)dx

≥
∫
x

(
√

4 +C2
1 (x)−C1(x)) exp

(
−C2

1 (x)/2
)
/2
√

2πdx

=Ex∼fρ
[(√

4 +C2
1 (x)−C1(x)

)
exp

(
−C2

1 (x)/2
)
/2
√

2π

]
,

where the last inequality follows by tail bounds on multivariate gaussians. Since, the rest of the proof of

Theorem 2 continues to hold, we get that at least(
1− 2d exp

(
−
(

1−
√

(1− γ2/4)/σ
)))

Ex∼fρ
[(√

4 +C2
1 (x)−C1(x)

)
exp

(
−C2

1 (x)/2
)
/2
√

2π

]
,

fraction of customers remain satisfied on the platform. Hence, for any chosen γ, the distribution of the

customer threshold plays an important role in estimating customer disengagement due to irrelevance.

We now examine this setting numerically. In Figure EC.2, we plot the fraction of engaged customers as a

function of the constraint parameter when the underlying distribution on customer tolerance is uniform or

truncated normal. We see the same tradeoff as before: very small sets do not contain the preferred products

of any customers, but very large sets cause excessive exploration and disengagement. We also observe that

varying ρ affects the fraction of engaged customers, but does not really affect the optimal set diameter γ∗.

Similar to Appendix C.1, we can use our earlier theoretical analysis to estimate a good choice of γ that

maximizes the fraction of satisfied customers under a given prior.

Figure EC.2 Minimum fraction of engaged customers as a function of the constraint threshold parameter for

uniform (left) and truncated normal (right) distributions.

C.4. Temporary disengagement

We now consider the model with temporary disengagement described in §3.4. Unlike Proposition 1, when

disengagement is sufficiently temporary, one can obtain sublinear regret over all customers.

Proposition EC.2. Under temporary disengagement with δ≤ 1, the regret of any non-anticipating policy

is

R(T,ρ, δ, uo)≥CTmax{ 1
2
,δ} ,

where C is a constant independent of T.
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We omit the proof since it follows directly from combining the standard lower bound in bandit problems

(without disengagement) and our construction in the proof of Proposition 1. In particular, when δ = 0

(customers disengage for a negligible time period), the classic lower bound applies and yields at least
√
T

regret. For nonzero δ, since the customer may disengage on the first time step with positive probability, the

lower bound on regret due to disengagement is at least T δ.

It is also easy to observe that when disengagement is relatively short (i.e., δ ≤ 1/2), consistent bandit

algorithms achieve the regret rates as in the classical setting without disengagement. Yet, this is an asymptotic

claim; we now show numerically that there is still value in constraining exploration even when δ≤ 1/2.

In particular, we compare Thompson Sampling (TS), greedy Bayesian updating (MLE), and our approach

of constrained Thompson Sampling (CTS). To model the information from disengagement, we re-solve the IP

with an exclusion constraint that ensures that the product that caused disengagement is not recommended

again to the same customer; a similar exclusion constraint is also added for the MLE and the TS algorithm

for a fair comparison.

The top row of Figure EC.3 plots engagement and cumulative regret when δ = 0.5, i.e., when the theory

prescribes that disengagement is asymptotically negligible. We see that the CTS algorithm still considerably

outperforms the benchmark algorithms on both metrics. The bottom row plots the same measures when dis-

engagement is even more temporary: δ = 0.25. We see that even in this setting, CTS continues to outperform

the benchmark algorithms, albeit by a narrower margin.

Figure EC.3 Total time of disengagement and Bayes regret averaged over 100 customers when customers leave

for
√
T periods (top) and when they leave for T 1/4 periods (bottom).
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Appendix D: Auxiliary Results

Greedy Bayesian Updating: Algorithm 3 formally states the greedy Bayesian updating algorithm from

§3.3. Note that when µ is the identity function (linear case), step 2 of the algorithm can be simplified to set

ût+1 =

(
a>1:ta1:t +

ξ2

σ2
I

)−1 (
a>1:tY1:t

)
.

Algorithm 3 Greedy Bayesian Updating (GBU)

Initialize and recommend a randomly selected product.
for t∈ [T ] do

Observe customer utility, Yt = µ(u>0 at) + εt.
Update customer feature estimate, ût+1 =

∑t

k=1 (Yk−µ(a>k ût))ak = 0.
Recommend product at+1 = arg maxi=1...,nû

>
t+1Vi.

end for

Technical results: We now state a useful lemma.

Lemma EC.2. Let X ∈ Rd ∼N (µ,σ2I) be a multivariate normal random variable with mean vector µ ∈

Rd. Let S ∈Rd be such that S ≥
∑i=d

i=1 µi. Then, P(‖X‖1 ≤ S)≥ 1− 2d exp

(
−
(
S−
∑i=d
i=1 µi

dσ

)2
)

Proof: The proof follows from simple application of the pigeon-hole principle and tail bounds on multi-

variate normal variables. �

Definition EC.2 formally defines consistent bandit algorithms.

Definition EC.2 (Lattimore and Szepesvari 2016). A policy π belongs in the class of consistent

bandit algorithms ΠC if for all u0, there exists ν ∈ [0,1) and R(T,ρ, p= 0, u0) =O(T ν). This is equivalent to

the following condition:

lim
T→∞

sup
log (R(T,ρ, p= 0, u0))

log(T )
= ν .


