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The contextual bandit literature has traditionally focused on algorithms that address the exploration-

exploitation tradeoff. In particular, greedy algorithms that exploit current estimates without any exploration

may be sub-optimal in general. However, exploration-free greedy algorithms are desirable in practical settings

where exploration may be costly or unethical (e.g., clinical trials). Surprisingly, we find that a simple greedy

algorithm can be rate optimal (achieves asymptotically optimal regret) if there is sufficient randomness in

the observed contexts (covariates). We prove that this is always the case for a two-armed bandit under a

general class of context distributions that satisfy a condition we term covariate diversity. Furthermore, even

absent this condition, we show that a greedy algorithm can be rate optimal with positive probability. Thus,

standard bandit algorithms may unnecessarily explore. Motivated by these results, we introduce Greedy-

First, a new algorithm that uses only observed contexts and rewards to determine whether to follow a greedy

algorithm or to explore. We prove that this algorithm is rate optimal without any additional assumptions

on the context distribution or the number of arms. Extensive simulations demonstrate that Greedy-First

successfully reduces exploration and outperforms existing (exploration-based) contextual bandit algorithms

such as Thompson sampling or upper confidence bound (UCB).
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1. Introduction

Service providers across a variety of domains are increasingly interested in personalizing decisions

based on customer characteristics. For instance, a website may wish to tailor content based on

an Internet user’s web history (Li et al. 2010), or a medical decision-maker may wish to choose

treatments for patients based on their medical records (Kim et al. 2011). In these examples, the costs

and benefits of each decision depend on the individual customer or patient, as well as their specific

context (web history or medical records respectively). Thus, in order to make optimal decisions,

the decision-maker must learn a model predicting individual-specific rewards for each decision

based on the individual’s observed contextual information. This problem is often formulated as
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a contextual bandit (Auer 2002, Langford and Zhang 2007, Li et al. 2010), which generalizes the

classical multi-armed bandit problem (Thompson 1933, Lai and Robbins 1985).

In this setting, the decision-maker has access to K possible decisions (arms) with uncertain

rewards. Each arm i is associated with an unknown parameter βi ∈ Rd that is predictive of its

individual-specific rewards. At each time t, the decision-maker observes an individual with an

associated context vector Xt ∈Rd. Upon choosing arm i, she realizes a (linear) reward of

X>t βi + εi,t , (1)

where εi,t are idiosyncratic shocks. One can also consider nonlinear rewards given by generalized

linear models (e.g., logistic, probit, and Poisson regression); in this case, (1) is replaced with

µ(X>t βi) + εi,t , (2)

where µ is a suitable inverse link function (Filippi et al. 2010, Li et al. 2017). The decision-maker’s

goal is to maximize the cumulative reward over T different individuals by gradually learning the arm

parameters. Devising an optimal policy for this setting is often computationally intractable, and

thus, the literature has focused on effective heuristics that are asymptotically optimal, including

UCB (Dani et al. 2008, Abbasi-Yadkori et al. 2011), Thompson sampling (Agrawal and Goyal

2013, Russo and Van Roy 2014), information-directed sampling (Russo and Van Roy 2018), and

algorithms inspired by ε-greedy methods (Goldenshluger and Zeevi 2013, Bastani and Bayati 2020).

The key ingredient in designing these algorithms is addressing the exploration-exploitation trade-

off. On one hand, the decision-maker must explore or sample each decision for random individuals

to improve her estimate of the unknown arm parameters {βi}Ki=1; this information can be used to

improve decisions for future individuals. Yet, on the other hand, the decision-maker also wishes to

exploit her current estimates {β̂i}Ki=1 to make the estimated best decision for the current individ-

ual in order to maximize cumulative reward. The decision-maker must therefore carefully balance

both exploration and exploitation to achieve good performance. In general, algorithms that fail to

explore sufficiently may fail to learn the true arm parameters, yielding poor performance.

However, exploration may be prohibitively costly or infeasible in a variety of practical envi-

ronments (Bird et al. 2016). In medical decision-making, choosing a treatment that is not the

estimated-best choice for a specific patient may be unethical; in marketing applications, testing

out an inappropriate ad on a potential customer may result in the costly, permanent loss of the

customer. Such concerns may deter decision-makers from deploying bandit algorithms in practice.

In this paper, we analyze the performance of exploration-free greedy algorithms. Surprisingly, we

find that a simple greedy algorithm can achieve the same state-of-the-art asymptotic performance
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guarantees as standard bandit algorithms if there is sufficient randomness in the observed contexts

(thereby creating natural exploration). In particular, we prove that the greedy algorithm is near-

optimal for a two-armed bandit when the context distribution satisfies a condition we term covariate

diversity ; this property requires that the covariance matrix of the observed contexts conditioned

on any half space is positive definite. We show that covariate diversity is satisfied by a natural

class of continuous and discrete context distributions. Furthermore, even absent covariate diversity,

we show that a greedy approach provably converges to the optimal policy with some probability

that depends on the problem parameters. Our results hold for arm rewards given by both linear

and generalized linear models. Thus, exploration may not be necessary at all in a general class of

problem instances, and is only sometimes be necessary in other problem instances.

Unfortunately, one may not know a priori when a greedy algorithm will converge, since its

convergence depends on unknown problem parameters. For instance, the decision-maker may not

know if the context distribution satisfies covariate diversity; if covariate diversity is not satisfied,

the greedy algorithm may be undesirable since it may achieve linear regret some fraction of the time

(i.e., it fails to converge to the optimal policy with positive probability). To address this concern, we

present Greedy-First, a new algorithm that seeks to reduce exploration when possible by starting

with a greedy approach, and incorporating exploration only when it is confident that the greedy

algorithm is failing with high probability. In particular, we formulate a simple hypothesis test

using observed contexts and rewards to verify (with high probability) if the greedy arm parameter

estimates are converging at the asymptotically optimal rate. If not, our algorithm transitions to a

standard exploration-based contextual bandit algorithm.

Greedy-First satisfies the same asymptotic guarantees as standard contextual bandit algorithms

without our additional assumptions on covariate diversity or any restriction on the number of arms.

More importantly, Greedy-First does not perform any exploration (i.e., remains greedy) with high

probability if the covariate diversity condition is met. Furthermore, even when covariate diversity

is not met, Greedy-First provably reduces the expected amount of forced exploration compared to

standard bandit algorithms. This occurs because the vanilla greedy algorithm provably converges

to the optimal policy with some probability even for problem instances without covariate diversity;

however, it achieves linear regret on average since it may fail a positive fraction of the time.

Greedy-First leverages this observation by following a purely greedy algorithm until it detects that

this approach has failed. Thus, in any bandit problem, the Greedy-First policy explores less on

average than standard algorithms that always explore. Simulations confirm our theoretical results,

and demonstrate that Greedy-First outperforms existing contextual bandit algorithms even when

covariate diversity is not met.



Author: Exploration-Free Contextual Bandits
4 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

Finally, Greedy-First provides decision-makers with a natural interpretation for exploration. The

hypothesis test for adopting exploration only triggers when an arm has not received sufficiently

diverse samples; at this point, the decision-maker can choose to explore that arm by assigning

it random individuals, or to discard it based on current estimates and continue with a greedy

approach. In this way, Greedy-First reduces the opaque nature of experimentation, which we believe

can be valuable for aiding the adoption of bandit algorithms in practice.

1.1. Related Literature

We study sequential decision-making algorithms under the classic linear contextual bandit frame-

work, which has been extensively studied in the computer science, operations, and statistics liter-

ature (see Chapter 4 of Bubeck and Cesa-Bianchi (2012) for an informative review). A key feature

of this setting is the presence of bandit feedback, i.e., the decision-maker only observes feedback for

her chosen decision and does not observe counterfactual feedback from other decisions she could

have made; this obstacle inspires the exploration-exploitation tradeoff in bandit problems.

The contextual bandit setting was first introduced by Auer (2002) through the LinRel algorithm

and was subsequently improved through the OFUL algorithm by Dani et al. (2008) and the LinUCB

algorithm by Chu et al. (2011). More recently, Abbasi-Yadkori et al. (2011) proved an upper bound

of O(d
√
T ) regret after T time periods when contexts are d-dimensional. While this literature often

allows for arbitrary (adversarial) context sequences, we consider the more restricted setting where

contexts are generated i.i.d. from some unknown distribution. This additional structure is well-

suited to certain applications (e.g., clinical trials on treatments for a non-infectious disease) and

allows for improved regret bounds in T (see Goldenshluger and Zeevi 2013, who prove an upper

bound of O(d3 logT ) regret), and more importantly, allows us to delve into the performance of

exploration-free policies which have not been analyzed previously.

Recent work has applied contextual bandit techniques for personalization in a variety of appli-

cations such as healthcare (Bastani and Bayati 2020, Tewari and Murphy 2017, Mintz et al. 2017,

Kallus and Zhou 2018, Chick et al. 2018, Zhou et al. 2019), recommendation systems (Chu et al.

2011, Kallus and Udell 2016, Agrawal et al. 2019, Bastani et al. 2018), and dynamic pricing (Cohen

et al. 2016, Qiang and Bayati 2016, Javanmard and Nazerzadeh 2019, Ban and Keskin 2020, Bas-

tani et al. 2019). However, this substantial literature requires exploration. Exploration-free greedy

policies are desirable in practical settings where exploration may be costly or unethical.

Greedy Algorithms. A related literature studies greedy (but not exploration-free) algorithms in

discounted Bayesian multi-armed bandit problems. The seminal paper by Gittins (1979) showed

that greedily applying an index policy is optimal for a classical multi-armed bandit in Bayesian

regret (with a known prior over the unknown parameters). Woodroofe (1979) and Sarkar (1991)
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extend this result to a Bayesian one armed bandit with a single i.i.d. covariate when the discount

factor approaches 1, and Wang et al. (2005a,b) generalize this result with a single covariate and

two arms. Mersereau et al. (2009) further model known structure between arm rewards. However,

these policies are not exploration-free; in particular, the Gittins index of an arm is not simply

the arm parameter estimate, but includes an additional factor that implicitly captures the value

of exploration for under-sampled arms. Recent work has shown a sharp equivalence between the

UCB policy (which incorporates exploration) and the Gittins index policy as the discount factor

approaches one (Russo 2019). In contrast, we consider a greedy policy with respect to unbiased

arm parameter estimates, i.e., without incorporating any exploration. It is surprising that such a

policy can be effective; in fact, we show that it is not rate optimal in general, but is rate optimal

for the linear contextual bandit if there is sufficient randomness in the context distribution.

It is also worth noting that, unlike the literature above, we consider undiscounted minimax

regret with unknown and deterministic arm parameters. Gutin and Farias (2016) show that the

Gittins analysis does not succeed in minimizing Bayesian regret over all sufficiently large horizons,

and propose “optimistic” Gittins indices (which incorporate additional exploration) to solve the

undiscounted Bayesian multi-armed bandit.

There are also technical parallels between our work and the analysis of greedy policies in the

dynamic pricing literature (Lattimore and Munos 2014, Broder and Rusmevichientong 2012). When

there is no context, the greedy algorithm provably converges to a suboptimal price with nonzero

probability (den Boer and Zwart 2013, Keskin and Zeevi 2014, 2018). However, in the presence of

contexts, Qiang and Bayati (2016) show that changes in the demand environment can induce nat-

ural exploration for an exploration-free greedy algorithm, thereby ensuring asymptotically optimal

performance. Our work significantly differs from this line of analysis since we need to learn multiple

reward functions (for each arm) simultaneously. Specifically, in dynamic pricing, the decision-maker

always receives feedback from the true demand function; in contrast, in the contextual bandit, we

only receive feedback from a decision if we choose it, thereby complicating the analysis. As a result,

the greedy policy is always rate optimal in the setting of Qiang and Bayati (2016), but only rate

optimal in the presence of covariate diversity in our setting.

Covariate Diversity. The adaptive control theory literature has studied “persistent excitation”:

for linear models, if the sample path of the system satisfies this condition, then the minimum

eigenvalue of the covariance matrix grows at a suitable rate, implying that the parameter estimates

converge over time (Narendra and Annaswamy 1987, Nguyen 2018). Thus, if persistent excitation

holds for each arm, we will eventually recover the true arm rewards. However, the problem remains

to derive policies that ensure that such a condition holds for each (optimal) arm; classical bandit

algorithms achieve this goal with high probability by incorporating exploration for under-sampled
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arms. Importantly, a greedy policy that does not incorporate exploration may not satisfy this

condition, e.g., the greedy policy may “drop” an arm. The covariate diversity assumption ensures

that there is sufficient randomness in the observed contexts, thereby exogenously ensuring that

persistent excitation holds for each arm regardless of the sample path taken by the bandit algorithm.

Conservative Bandits. Our approach is also related to recent literature on designing conservative

bandit algorithms (Wu et al. 2016, Kazerouni et al. 2017) that operate within a safety margin, i.e.,

the regret is constrained to stay below a certain threshold that is determined by a baseline policy.

This literature proposes algorithms that restrict the amount of exploration (similar to the present

work) in order to satisfy a safety constraint. Wu et al. (2016) studies the classical multi-armed

bandit, and Kazerouni et al. (2017) generalizes these results to the contextual linear bandit.

Additional Related Work. Since the first draft of this paper appeared online, there have been two

follow-up papers that cite our work and provide additional theoretical and empirical validation for

our results. Kannan et al. (2018) consider the case where an adversary selects the observed contexts,

but these contexts are then perturbed by white noise; they find that the greedy algorithm can be

rate optimal in this setting even for small perturbations. Bietti et al. (2018) perform an extensive

empirical study of contextual bandit algorithms on 524 datasets that are publicly available on the

OpenML platform. These datasets arise from a variety of applications including medicine, natural

language, and sensors. Bietti et al. (2018) find that the greedy algorithm outperforms a wide range

of bandit algorithms in cumulative regret on more that 400 datasets. This study provides strong

empirical validation of our theoretical findings.

1.2. Main Contributions and Organization of the Paper

We begin by studying conditions under which the greedy algorithm performs well. In §2, we intro-

duce the covariate diversity condition (Assumption 3), and show that it holds for a general class of

continuous and discrete context distributions. In §3, we show that when covariate diversity holds,

the greedy policy is asymptotically optimal for a two-armed contextual bandit with linear rewards

(Theorem 1); this result is extended to rewards given by generalized linear models in Proposition

1. For problem instances with more than two arms or where covariate diversity does not hold, we

prove that the greedy algorithm is asymptotically optimal with some probability, and we provide

a lower bound on this probability (Theorem 2).

Building on these results, in §4, we introduce the Greedy-First algorithm that uses observed

contexts and rewards to determine whether the greedy algorithm is failing or not via a hypothesis

test. If the test detects that the greedy steps are not receiving sufficient exploration, the algorithm

switches to a standard exploration-based algorithm. We show that Greedy-First achieves rate opti-

mal regret bounds without our additional assumptions on covariate diversity or number of arms.

http://www.openml.org
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More importantly, we prove that Greedy-First remains purely greedy (while achieving asymptoti-

cally optimal regret) for almost all problem instances for which a pure greedy algorithm is sufficient

(Theorem 3). Finally, for problem instances with more than two arms or where covariate diversity

does not hold, we prove that Greedy-First remains exploration-free and rate optimal with some

probability, and we provide a lower bound on this probability (Theorem 4). This result implies

that Greedy-First reduces exploration on average compared to standard bandit algorithms.

Finally, in §5, we run simulations on synthetic and real datasets to verify our theoretical results.

We find that the greedy algorithm outperforms standard bandit algorithms when covariate diver-

sity holds, but can perform poorly when this assumption does not hold. However, Greedy-First

outperforms standard bandit algorithms even in the absence of covariate diversity, while remaining

competitive with the greedy algorithm in the presence of covariate diversity. Thus, Greedy-First

provides a desirable compromise between avoiding exploration and learning the true policy.

2. Problem Formulation

We consider a K-armed contextual bandit for T time steps, where T is unknown. Each arm i is

associated with an unknown parameter βi ∈Rd. For any integer n, let [n] denote the set {1, ..., n}.
At each time t, we observe a new individual with context vector Xt ∈Rd. We assume that {Xt}t≥0
is a sequence of i.i.d. samples from some unknown distribution that admits probability density

pX(x) with respect to the Lebesgue measure. If we pull arm i∈ [K], we observe a stochastic linear

reward (in §3.4, we discuss how our results can be extended to generalized linear models)

Yi,t =X>t βi + εi,t ,

where εi,t are independent σ-subgaussian random variables (see Definition 1 below).

Definition 1. A random variable Z is σ-subgaussian if for all τ > 0 we have E[eτ Z ]≤ eτ2σ2/2.

We seek to construct a sequential decision-making policy π that learns the arm parameters {βi}Ki=1

over time in order to maximize expected reward for each individual.

We measure the performance of π by its cumulative expected regret, which is the standard metric

in the analysis of bandit algorithms (Lai and Robbins 1985, Auer 2002). In particular, we com-

pare ourselves to an oracle policy π∗, which knows the arm parameters {βi}Ki=1 in advance. Upon

observing context Xt, the oracle will always choose the best expected arm π∗t = maxj∈[K](X
>
t βj).

Thus, if we choose an arm i∈ [K] at time t, we incur instantaneous expected regret

rt ≡ EX∼pX

[
max
j∈[K]

(X>t βj)−X>t βi
]
,

which is simply the expected difference in reward between the oracle’s choice and our choice. We

seek to minimize the cumulative expected regret RT :=
∑T

t=1 rt. In other words, we seek to mimic

the oracle’s performance by gradually learning the arm parameters.
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Additional Notation: Let Bd
R be the closed `2 ball of radius R around the origin in Rd defined as

Bd
R =

{
x∈Rd : ‖x‖2 ≤R

}
, and let the volume of a set S ⊂Rd be vol(S)≡

∫
S

dx.

2.1. Assumptions

We now describe the assumptions required for our regret analysis. Some assumptions will be relaxed

in later sections of the paper as noted below.

Our first assumption is that the contexts as well as the arm parameters {βi}Ki=1 are bounded.

This ensures that the maximum regret at any time step t is bounded. This is a standard assumption

made in the bandit literature (see e.g., Dani et al. 2008).

Assumption 1 (Parameter Set). There exists a positive constant xmax such that the context

probability density pX has no support outside the ball of radius xmax, i.e., ‖Xt‖2 ≤ xmax for all t.

There also exists a constant bmax such that ‖βi‖2 ≤ bmax for all i∈ [K].

Second, we make an assumption on the margin condition (defined below) satisfied by the context

probability density pX (Tsybakov et al. 2004).

Definition 2 (α-Margin Condition). For α≥ 0, we say that the context probability density

pX satisfies the α-margin condition, if there exists a constant C > 0 such that for each κ> 0:

∀ i 6= j : PX
[
0< |X>(βi−βj)| ≤ κ

]
≤Cκα .

Note that any context probability density pX satisfies the margin condition for α = 0 by taking

C = 1; higher values of α impose stronger assumptions on pX . As shown by Goldenshluger and

Zeevi (2009), the convergence rate of bandit algorithms depends on α, i.e., when α= 1, they prove

matching upper and lower bounds of O(logT ) regret, but when α= 0, the regret can be as high

as O(
√
T ). This is because α= 1 rules out unusual context distributions that become unbounded

near the decision boundary (which has zero measure), thereby making learning difficult.

Our second assumption is that pX satisfies α= 1. We impose this assumption for simplicity of

the proofs; however, all our results carry through straightforwardly for general values of α. To

illustrate, we prove convergence of the greedy algorithm for any α (see Corollary 1 to Theorem 1).

Assumption 2 (Margin Condition). There exists a constant C0 > 0 such that for each κ> 0:

∀ i 6= j : PX
[
0< |X>(βi−βj)| ≤ κ

]
≤C0κ .

Remark 1. The bandit literature distinguishes between problem-dependent and independent

bounds (see, e.g., Abbasi-Yadkori et al. 2011). Specifically, in the problem-dependent case, they

assume that there exists some gap ∆ > 0 between the rewards of the optimal arm and all other
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arms. Generally, the regret scales as O(logT ) in the problem-dependent case and O(
√
T ) in the

problem-independent case. The problem-independent case corresponds to α= 0 in the worst case;

the problem-dependent case corresponds to α= 1 when K = 2 since pX satisfies PX
[
0< |X>(β1−

β2)| ≤ ∆
]

= 0. As noted earlier, we prove convergence of the greedy algorithm under covariate

diversity in both settings (see Corollary 1).

Thus far, we have made generic assumptions that are standard in the bandit literature. Our

third assumption introduces the covariate diversity condition, which is essential for proving that

the greedy algorithm always converges to the optimal policy. This condition guarantees that no

matter what our arm parameter estimates are at time t, there is a diverse set of possible contexts

(supported by the context probability density pX) under which each arm may be chosen.

Assumption 3 (Covariate Diversity). There exists a positive constant λ0 such that for each

vector u∈Rd the minimum eigenvalue of EX [XX>I{X>u≥ 0}] is at least λ0, i.e.,

λmin

(
EX
[
XX>I{X>u≥ 0}

])
≥ λ0 .

Assumption 3 holds for a general class of distributions. For instance, if the context probability

density pX is bounded below by a nonzero constant in an open set around the origin, then it

would satisfy covariate diversity. This includes common distributions such as the uniform or trun-

cated gaussian distributions. Furthermore, discrete distributions such as the classic Rademacher

distribution on binary random variables also satisfy covariate diversity.

Remark 2. As discussed in the related literature, the adaptive control theory literature has

studied “persistent excitation,” which is reminiscent of the covariate diversity condition without

the indicator function I{X>u≥ 0}. If persistent excitation holds for each arm in a given sample

path, then the minimum eigenvalue of the corresponding covariance matrix grows at a suitable

rate, and the arm parameter estimate converges over time. However, a greedy policy that does

not incorporate exploration may not satisfy this condition, e.g., the greedy policy may drop an

arm. Assumption 3 ensures that there is sufficient randomness in the observed contexts, thereby

exogenously ensuring that persistent excitation holds for each arm (see Lemma 4), regardless of

the sample path taken by the bandit algorithm.

2.2. Examples of Distributions Satisfying Assumptions 1-3

While Assumptions 1-2 are generic, it is not straightforward to verify Assumption 3. The following

lemma provides sufficient conditions (that are easier to check) that guarantee Assumption 3.

Lemma 1. If there exists a set W ⊂ Rd that satisfies conditions (a), (b), and (c) given below,

then pX satisfies Assumption 3.
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(a) W is symmetric around the origin; i.e., if x∈W then −x∈W .

(b) There exist positive constants a, b∈R such that for all x∈W , a · pX(−x)≤ b · pX(x).

(c) There exists a positive constant λ such that
∫
W

xx>pX(x)dx� λId. For discrete distributions,

the integral is replaced with a sum.

We now use Lemma 1 to demonstrate that covariate diversity holds for a wide range of continuous

and discrete context distributions, and we explicitly provide the corresponding constants. It is

straightforward to verify that these examples (and any product of their distributions) also satisfy

Assumptions 1 and 2.

1. Uniform Distribution. Consider the uniform distribution over an arbitrary bounded set V

that contains the origin. Then, there exists some R> 0 such that Bd
R ⊂ V . Taking W =Bd

R,

we note that conditions (a) and (b) of Lemma 1 follow immediately. We now check condition

(c) by first stating the following lemma (see Appendix A for proof):

Lemma 2.
∫
Bd
R

xx>dx =
[
R2

d+2
vol(Bd

R)
]
Id for any R> 0.

By definition, pX(x) = 1/vol(V ) for all x ∈ V , and vol(Bd
R) = Rdvol(Bd

xmax
)/xdmax. Applying

Lemma 2, we see that condition (c) of Lemma 1 holds with constant λ=Rd+2/[(d+ 2)xdmax].

2. Truncated Multivariate Gaussian Distribution. Let pX be a multivariate Gaussian dis-

tribution N(0d,Σ), truncated to 0 for all ‖x‖2 ≥ xmax. The density after renormalization is

pX(x) =
exp

(
− 1

2
x>Σ−1x

)∫
Bdxmax

exp
(
− 1

2
z>Σ−1z

)
dz

I(x∈Bd
xmax

) .

Taking W =Bd
xmax

, conditions (a) and (b) of Lemma 1 follow immediately. Condition (c) of

Lemma 1 holds with constant

λ=
1

(2π)d/2|Σ|d/2
exp

(
− x2

max

2λmin(Σ)

)
x2
max

d+ 2
vol(Bd

xmax
) ,

as shown in Lemma 7 in Appendix A.

3. Gibbs Distributions with Positive Covariance. Consider the set {±1}d ⊂ Rd equipped

with a discrete probability density pX , which satisfies

pX(x) =
1

Z
exp

( ∑
1≤i,j≤d

Jijxixj

)
,

for any x = (x1, x2, . . . , xd) ∈ {±1}d. Here, Jij ∈R are (deterministic) parameters, and Z is a

normalization term known as the partition function in the statistical physics literature. We

define W = {±1}d, satisfying conditions (a) and (b) of Lemma 1. Furthermore, condition (c)

follows by definition since the covariance of the distribution is positive-definite. This class of

distributions includes the well-known Rademacher distribution (by setting all Jij = 0).
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A special case under which the conditions in Lemma 1 hold is when W is the entire support of

the density pX ; this is the case in the Gaussian and Gibbs distributions, where W = Bd
xmax

and

W = {±1}d respectively. Now, let X(1) be a random vector that satisfies this special case and has

mean 0. Let X(2) be another vector that is independent of X(1) and satisfies the general form of

Lemma 1. Then it is easy to see that X = (X(1),X(2)) also satisfies the conditions in Lemma 1:

parts (a) and (b) clearly hold; to see why (c) holds, note that the cross diagonal entries in XX>

are zero since X(1) has mean 0. This construction illustrates how covariate diversity works for

distributions that contain a mixture of discrete and continuous components.

3. Greedy Bandit

Notation. Let the design matrix X be the T ×d matrix whose rows are Xt. Similarly, for i∈ [K],

let Yi be the length T vector of potential outcomes X>t βi+εi,t. Since we only obtain feedback when

arm i is played, entries of Yi may be missing. For any t ∈ [T ], let Si,t = {j | πj = i} ∩ [t] be the set

of times when arm i was played within the first t time steps. We use the notation X(Si,t), Y (Si,t),

and ε(Si,t) to refer to the design matrix, the outcome vector, and vector of idiosyncratic shocks

respectively, for observations restricted to time periods in Si,t. We estimate βi at time t based on

X(Si,t) and Y (Si,t), using ordinary least squares (OLS) regression that is defined below. We denote

this estimator β̂X(Si,t),Y (Si,t), or β̂(Si,t) for short.

Definition 3 (OLS Estimator). For any X0 ∈ Rn×d and Y0 ∈ Rn×1, the OLS estimator is

β̂X0,Y0
≡ arg minβ ‖Y0−X0β‖22, which is equal to (X>0 X0)

−1X>0 Y0 when X>0 X0 is invertible.

We now describe the greedy algorithm and its performance guarantees under covariate diversity.

3.1. Algorithm

At each time step, we observe a new context Xt and use the current arm estimates β̂(Si,t−1) to

play the arm with the highest estimated reward, i.e., πt = arg maxi∈[K]X
>
t β̂(Si,t−1). Upon playing

arm πt, a reward Yπt,t =X>t βπt + επt,t is observed. We then update our estimate for arm πt but we

need not update the arm parameter estimates for other arms as β̂(Si,t−1) = β̂(Si,t) for i 6= πt. The

update formula is given by

β̂(Sπt,t) =
[
X(Sπt,t)>X(Sπt,t)

]−1
X(Sπt,t)>Y(Sπt,t) .

We do not update the parameter of arm πt if X(Sπt,t)>X(Sπt,t) is not invertible (see Remark 3

below for alternative choices). The pseudo-code for the algorithm is given in Algorithm 1.

Remark 3. In Algorithm 1, we only update the arm parameter β̂(Sπt,t) from its (arbitrary)

initial value of 0 when the covariance matrix X(Sπt,t)>X(Sπt,t) is invertible. However, one can

alternatively update the parameter using ridge regression or a pseudo inverse to improve empirical

performance. Our theoretical analysis is unaffected by this choice — as we will show in Lemma
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Algorithm 1 Greedy Bandit

Initialize β̂(Si,0) = 0∈Rd for i∈ [K]
for t∈ [T ] do

Observe Xt ∼ pX
πt← arg maxiX

>
t β̂(Si,t−1) (break ties randomly)

Sπt,t←Sπt,t−1 ∪{t}
Play arm πt, observe Yπt,t =X>t βπt + επt,t
If X(Sπt,t)>X(Sπt,t) is invertible, update the arm parameter β̂(Sπt,t) via

β̂(Sπt,t)←
[
X(Sπt,t)>X(Sπt,t)

]−1
X(Sπt,t)>Y(Sπt,t)

end for

4, no matter what estimator β̂(Si,t) we use, covariate diversity ensures that the probability that

these covariance matrices are singular is upper bounded by exp(logd−C1t), thereby contributing

at most an additive constant factor to the cumulative regret (the second term in Lemma 6).

3.2. Performance of Greedy Bandit with Covariate Diversity

We now establish a finite-sample upper bound on the cumulative expected regret of the Greedy

Bandit for the two-armed contextual bandit when covariate diversity is satisfied.

Theorem 1. If K = 2 and Assumptions 1-3 are satisfied, the cumulative expected regret of the

Greedy Bandit at time T ≥ 3 is at most

RT (π)≤ 128C0C̄x
4
maxσ

2d(logd)3/2

λ2
0

logT + C̄

(
128C0x

4
maxσ

2d(logd)3/2

λ2
0

+
160bmaxx

3
maxd

λ0

+ 2xmaxbmax

)
(3)

≤CGB logT =O (logT ) ,

where the constant C0 is defined in Assumption 2 and

C̄ =

(
1

3
+

7

2
(logd)−0.5 +

38

3
(logd)−1 +

67

4
(logd)−1.5

)
∈ (1/3,52) . (4)

We prove an analogous result for the greedy algorithm in the case where arm rewards are given by

generalized linear models (see §3.4 and Proposition 1 for details).

Goldenshluger and Zeevi (2013) established a lower bound of O(logT ) for any algorithm in a

two-armed contextual bandit. While they do not make Assumption 3, the distribution used in their

proof satisfies Assumption 3; thus their result applies to our setting. Combined with our upper

bound (Theorem 1), we conclude that the Greedy Bandit is rate optimal1.

We can easily remove Assumption 2 and extend Theorem 1 to general margin conditions (i.e.,

α 6= 1 in Definition 2) in order to cover problem-independent settings as well:

1 Our upper bound in Theorem 1 scales as O(d3(logd)3/2 logT ) in the context dimension d. This is because the term
x2

max/λ0 scales as O(d) for standard distributions satisfying covariate diversity (e.g., truncated multivariate gaussian
or uniform distribution). Thus, our upper bound for the Greedy Bandit is slightly worse (by a factor of d) than the
upper bound of O(d2(logd)3/2 logT ) established in Bastani and Bayati (2020) for the OLS Bandit.
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Corollary 1. Let α denote the general margin condition satisfied by pX (Definition 2). If

K = 2 and only Assumptions 1 and 3 are satisifed, the cumulative expected regret of the Greedy

Bandit is at most

RT (π) =


O
(
T (1−α)/2

)
if 0≤ α< 1,

O (logT ) if α= 1,

O(1) if α> 1,

(5)

The proof of this result is given in Appendix D.1. In other words, the Greedy Bandit continues to

be rate optimal under general margin conditions for the two-armed contextual bandit as long as

covariate diversity is satisfied.

3.3. Proof of Theorem 1

Notation. Let Ri =
{
x∈X : x>βi ≥maxj 6=i x

>βj
}

denote the true set of contexts where arm i is

optimal. Then, let R̂πi,t =
{

x∈X : x>β̂(Si,t−1)≥maxj 6=i x
>β̂(Sj,t−1)

}
denote the estimated set of

contexts at time t where arm i appears optimal; in other words, if the context Xt ∈ R̂πi,t, then the

greedy policy will choose arm i at time t (since we assume without loss of generality that ties are

broken randomly as selected by π and thus, {Ri}Ki=1 and {R̂πi,t}Ki=1 partition the context space X ).

For any t ∈ [T ], let Ht−1 = σ (X1:t, π1:t−1, Y1(S1,t−1), Y2(S2,t−1), . . . , YK(SK,t−1)) denote the σ-

algebra containing all observed information up to time t before taking an action; thus, our policy πt

is Ht−1-measurable. Furthermore, let H−t−1 = σ (X1:t−1, π1:t−1, Y1(S1,t−1), Y2(S2,t−1), . . . , YK(SK,t−1))

which is the σ-algebra containing all observed information before time t.

Define Σ̂(Si,t) = X(Si,t)>X(Si,t) as the sample covariance matrix for observations from arm i up

to time t. We may compare this to the expected covariance matrix for arm i under the greedy

policy, defined as Σ̃i,t =
∑t

k=1E
[
XkX

>
k I[Xk ∈ R̂πi,k] | H−k−1

]
.

Proof Strategy. Intuitively, covariate diversity (Assumption 3) guarantees that there is suf-

ficient randomness in the observed contexts, which creates natural “exploration.” In particular,

no matter what our current arm parameter estimates {β̂ (S1,t) , β̂ (S2,t)} are at time t, each arm

will be chosen by the greedy policy with at least some constant probability (with respect to pX)

depending on the observed context. We formalize this intuition in the following lemma.

Lemma 3. Given Assumptions 1 and 3, the following holds for any u∈Rd:

PX [x>u≥ 0]≥ λ0

x2
max

.

Proof of Lemma 3. For any observed context x, note that xx> � x2
maxId by Assumption 1.

Re-stating Assumption 3 for each u∈Rd, we can write

λ0Id �
∫

xxT I(x>u≥ 0)pX(x)dx � x2
maxId

∫
I(x>u≥ 0)pX(x)dx = x2

maxPX [x>u≥ 0]Id,

since the indicator function and pX are both nonnegative. �
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Taking u = β̂ (S1,t)− β̂ (S2,t), Lemma 3 implies that arm 1 will be pulled with probability at

least λ0/x
2
max at each time t; the claim holds analogously for arm 2. Thus, each arm will be played

at least λ0T/x
2
max = Ω(T ) times in expectation. However, this is not sufficient to guarantee that

each arm parameter estimate β̂i converges to the true parameter βi. In Lemma 4, we establish a

sufficient condition for convergence.

First, we show that covariate diversity guarantees that the minimum eigenvalue of each arm’s

expected covariance matrix Σ̃i,t under the greedy policy grows linearly with t. This result implies

that not only does each arm receive a sufficient number of observations under the greedy policy,

but also that these observations are sufficiently diverse (in expectation). Next, we apply a standard

matrix concentration inequality (see Lemma 9 in Appendix B) to show that the minimum eigenvalue

of each arm’s sample covariance matrix Σ̂(Si,t) also grows linearly with t. This will guarantee the

convergence of our regression estimates for each arm parameter.

Lemma 4. Take C1 = λ0/(40x2
max). Given Assumptions 1 and 3, the following holds for the

minimum eigenvalue of the empirical covariance matrix of each arm i∈ [2]:

P
[
λmin

(
Σ̂(Si,t)

)
≥ λ0t/4

]
≥ 1− exp(logd−C1t) .

Proof of Lemma 4. Without loss of generality, let i= 1. For any k≤ t, let uk = β̂(S1,k)− β̂(S2,k);

by the greedy policy, we pull arm 1 if X>k uk−1 > 0 and arm 2 if X>k uk−1 < 0 (ties are broken

randomly using a fair coin flip Wk). Thus, the estimated set of optimal contexts for arm 1 is

R̂1,k =
{
x∈X : x>uk−1 > 0

}
∪
{
x∈X : x>uk−1 = 0,Wk = 0

}
.

First, we seek to bound the minimum eigenvalue of the expected covariance matrix Σ̃1,t =∑t

k=1E
[
XkX

>
k I[Xk ∈ R̂1,k] | H−k−1

]
. Expanding one term in the sum, we can write

E
[
XkX

>
k I[Xk ∈ R̂1,k] | H−k−1

]
=E

[
XkX

>
k

(
I[X>k uk−1 > 0] + I[X>k uk−1 = 0,Wk = 0]

)
| H−k−1

]
=EX

[
XX>

(
I[X>uk−1 > 0] +

1

2
I[X>uk−1 = 0]

)]
≥ λ0/2 ,

where the last line follows from Assumption 3. Since the minimum eigenvalue function λmin(·) is

concave over positive semi-definite matrices, we can write

λmin

(
Σ̃1,t

)
= λmin

(
t∑

k=1

E
[
XX>I[X ∈ R̂1,k] | H−k−1

])

≥
t∑

k=1

λmin

(
E
[
XX>I[X ∈ R̂1,k] | H−k−1

])
≥ λ0t

2
.
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Next, we seek to use matrix concentration inequalities (Lemma 9 in Appendix B) to bound the

minimum eigenvalue of the sample covariance matrix Σ̂(S1,t). To apply the concentration inequality,

we also need to show an upper bound on the maximum eigenvalue of XkX
>
k ; this follows trivially

from Assumption 1 using the Cauchy-Schwarz inequality:

λmax(XkX
>
k ) = max

u

‖XkX
>
k u‖2

‖u‖2
≤ ‖Xk‖22‖u‖2

‖u‖2
≤ x2

max.

We can now apply Lemma 9, taking the finite adapted sequence {Xk} to be
{
XkX

>
k I[Xk ∈ R̂1,k]

}
,

so that Y = Σ̂(S1,t) and W = Σ̃1,t. We also take R= x2
max and γ = 1/2. Thus, we have

PX
[
λmin

(
Σ̂(S1,t)

)
≤ λ0t

4
and λmin

(
Σ̃1,t

)
≥ λ0t

2

]
≤ d

(
e−0.5

0.50.5

) λ0
4x2

max
t

≤ exp

(
logd− 0.1λ0

4x2
max

t

)
,

using the fact −0.5− 0.5 log(0.5) ≤ −0.1. As we showed earlier, PX
(
λmin

(
Σ̃1,t

)
≥ λ0t

2

)
= 1. This

proves the result. �

Next, Lemma 5 guarantees with high probability that each arm’s parameter estimate has small `2

error with respect to the true parameter if the minimum eigenvalue of the sample covariance matrix

Σ̂(Si,t) has a positive lower bound. Note that we cannot directly use results on the convergence

of the OLS estimator since the set of samples Si,t from arm i at time t are not i.i.d. (we use the

arm estimate β̂(Si,t−1) to decide whether to play arm i at time t; thus, the samples in Si,t are

correlated.). Instead, we use a Bernstein concentration inequality to guarantee convergence with

adaptive observations. In the following lemma, note that n is any deterministic upper bound on

the total number of times that arm i is pulled until time t. In the proof of Lemma 6, we will take

n= t; however, we state the lemma for general n for later use in our probabilistic guarantees.

Lemma 5. Taking C2 = λ2/(2dσ2x2
max) and n≥ |Si,t|, we have for all λ,χ> 0,

P
[
‖β̂(Si,t)−βi‖2 ≥ χ and λmin

(
Σ̂(Si,t)

)
≥ λt

]
≤ 2d exp

(
−C2t

2χ2/n
)
.

Proof of Lemma 5. We begin by noting that if the event λmin

(
Σ̂(Si,t)

)
≥ λt holds, then

‖β̂(Si,t)−βi‖2 = ‖
(
X(Si,t)>X(Si,t)

)−1
X(Si,t)>ε(Si,t)‖2

≤ ‖
(
X(Si,t)>X(Si,t)

)−1 ‖2‖X(Si,t)>ε(Si,t)‖2 ≤
1

λt
‖X(Si,t)>ε(Si,t)‖2.

As a result, we can write

P
[
‖β̂(Si,t)−βi‖2 ≥ χ and λmin

(
Σ̂(Si,t)

)
≥ λt

]
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= P
[
‖β̂(Si,t)−βi‖2 ≥ χ | λmin

(
Σ̂(Si,t)

)
≥ λt

]
P
[
λmin

(
Σ̂(Si,t)

)
≥ λt

]
≤ P

[
‖X(Si,t)>ε(Si,t)‖2 ≥ χtλ | λmin

(
Σ̂(Si,t)

)
≥ λt

]
P
[
λmin

(
Σ̂(Si,t)

)
≥ λt

]
≤ P

[
‖X(Si,t)>ε(Si,t)‖2 ≥ χtλ

]
≤

d∑
r=1

P
[
|ε(Si,t)>X(Si,t)(r)| ≥

λt ·χ√
d

]
,

where X(r) denotes the rth column of X. We can expand

ε(Si,t)>X(Si,t)(r) =
t∑

j=1

εjXj,rI [j ∈ Si,j] .

For simplicity, define Dj = εjXj,rI [j ∈ Si,j]. First, note that Dj is (xmaxσ)-subgaussian, since εj is σ-

subgaussian and |Xj,r| ≤ xmax. Next, note that Xj,r and I [j ∈ Si,j] are bothHj−1 measurable; taking

the expectation gives E[Dj | Hj−1] =Xj,rI [j ∈ Si,j]E[εj | Hj−1] = 0. Thus, the sequence {Dj}tj=1 is a

martingale difference sequence adapted to the filtration H1 ⊂H2 ⊂ · · · ⊂Ht. Applying a standard

Bernstein concentration inequality (see Lemma 8 in Appendix B), we can write

P

[∣∣∣ t∑
j=1

Dj

∣∣∣≥ λt ·χ√
d

]
≤ 2exp

(
− t2λ2χ2

2dσ2x2
maxn

)
,

where n is an upper bound on the number of nonzero terms in above sum, i.e., an upper bound on

|Si,t|. This yields the desired result. �

To summarize, Lemma 4 provides a lower bound (with high probability) on the minimum eigen-

value of the sample covariance matrix. Lemma 5 states that if such a bound holds on the minimum

eigenvalue of the sample covariance matrix, then the estimated parameter β̂(Si,t) is close to the

true βi (with high probability). Having established convergence of the arm parameters under the

Greedy Bandit, one can use a standard peeling argument to bound the instantaneous expected

regret of the Greedy Bandit algorithm (the remaining proof is given in Appendix C).

Lemma 6. Define Fλi,t =
{
λmin (X(Si,t)>X(Si,t))≥ λt

}
. Then, the instantaneous expected regret

of the Greedy Bandit at time t≥ 2 satisfies

rt(π)≤ 4(K − 1)C0C̄x
2
max(logd)3/2

C3

1

t− 1
+ 4(K − 1)bmaxxmax

(
max
i

P[Fλ0/4
i,t−1]

)
,

where C3 = λ2
0/(32dσ2x2

max), C0 is defined in Assumption 2, and C̄ is defined in Theorem 1.

Note that P[Fλ0/4
i,t−1] can be upper bounded using Lemma 4. Substituting this in the upper bound

derived on rt(π) in Lemma 6, and using RT (π) =
∑T

t=1 rt(π) finishes the proof of Theorem 1.
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3.4. Generalized Linear Rewards

In this section, we discuss how our results generalize when the arm rewards are given by a general-

ized linear model (GLM). Now, upon playing arm i after observing context Xt, the decision-maker

realizes a reward Yi,t with expectation E[Yi,t] = µ(X>t βi), where µ is the inverse link function.

For instance, in logistic regression, this would correspond to a binary reward Yi,t with µ(z) =

1/(1+exp(−z)); in Poisson regression, this would correspond to an integer-valued reward Yi,t with

µ(z) = exp(z); in linear regression, this would correspond to µ(z) = z.

In order to describe the greedy policy in this setting, we give a brief overview of the exponential

family, generalized linear model, and maximum likelihood estimation.

Exponential family. A univariate probability distribution belongs to the canonical exponential

family if its density with respect to a reference measure (e.g., Lebesgue measure) is given by

pθ(z) = exp [zθ−A(θ) +B(z)] , (6)

where θ is the underlying real-valued parameter, A(·) and B(·) are real-valued functions, and A(·)

is assumed to be twice continuously differentiable. For simplicity, we assume the reference measure

is the Lebesgue measure. It is well known that if Z is distributed according to the above canonical

exponential family, then it satisfies E[Z] =A′(θ) and Var[Z] =A′′(θ), where A′ and A′′ denote the

first and second derivatives of the function A with respect to θ, and A is strictly convex (see e.g.,

Lehmann and Casella 1998).

Generalized linear model (GLM). The natural connection between exponential families and

GLMs is provided by assuming that the density of Yi,t for the context Xt and arm i is given by

gβi(Yi,t |Xt) = pX>t βi(Yi,t). where p is defined in (6). In other words, the reward upon playing arm

i for context Xt is Yi,t with density

exp
[
Yi,tX

>
t βi−A(X>t βi) +B(Yi,t)

]
.

Using the aforementioned properties of the exponential family, E[Yi,t] = A′(X>t βi), i.e., the link

function µ=A′. This implies that µ is continuously differentiable and its derivative is A′′. Thus, µ

is strictly increasing since A is strictly convex.

Maximum likelihood estimation. Suppose that we have n samples (X1, Y1), (X2, Y2), . . . , (Xn, Yn)

from a distribution with density gβ(Y |X). The maximum likelihood estimator of β based on this

sample is given by

arg max
β

n∑
`=1

log gβ(Y` |X`) = arg max
β

n∑
`=1

[
Y`X

>
` β−A(X>` β) +B(Y`)

]
. (7)
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Since A is strictly convex (so −A is strictly concave), the solution to (7) can be obtained efficiently

(see e.g., McCullagh and Nelder 1989). It is not hard to see that whenever X>X is positive definite,

this solution is unique (see Appendix D.2 for a proof). We denote this unique solution by hµ(X,Y).

Now we are ready to generalize the Greedy Bandit algorithm when the arm rewards are given by

a GLM. Using similar notation as in the linear reward case, given the estimates
{
β̂(Si,t−1)

}
i∈[K]

at time t, the greedy policy plays the arm that maximizes expected estimated reward, i.e.,

πt = arg max
i∈[K]

µ
(
X>t β̂(Si,t−1)

)
.

Since µ is a strictly increasing function, this translates to πt = arg maxi∈[K]X
>
t β̂(Si,t−1).

Algorithm 2 Greedy Bandit for Generalized Linear Models

Input parameters: inverse link function µ
Initialize β̂(Si,0) = 0 for i∈ [K]
for t∈ [T ] do

Observe Xt ∼ pX
πt← arg maxiX

>
t β̂(Si,t−1) (break ties randomly)

Play arm πt, observe Yi,t = µ(X>t βπt) + επt,t
Update β̂(Sπt,t)← hµ (X(Sπt,t),Y(Sπt,t)), where hµ(X,Y) is the solution to the maximum

likelihood estimation in Equation (7)
end for

Next, we state the following result (proved in Appendix D.2) that Algorithm 2 achieves loga-

rithmic regret when K = 2 and the covariate diversity assumption holds.

Proposition 1. Consider arm rewards given by a GLM with σ-subgaussian noise εi,t = Yi,t −
µ(X>t βi). Define mθ = min{µ′(z) : z ∈ [−(bmax + θ)xmax, (bmax + θ)xmax]}. If K = 2 and Assump-

tions 1-3 are satisfied, the cumulative expected regret of Algorithm 2 at time T is at most

RT (π)≤ 128C0C̄µLµx
4
maxσ

2d

λ2
0

logT + C̄µLµ

(
128

C0x
4
maxσ

2d

λ2
0

+ 160
bmaxx

3
maxd

λ0

+ 2xmaxbmax

)
=O (logT ) ,

where the constant C0 is defined in Assumption 2, Lµ is the Lipschitz constant of the function µ(·)
on the interval [−xmaxbmax, xmaxbmax], and C̄µ is defined as C̄µ = 1

3

(√
log 4d

mbmax
+ 1
)3

+ 3
2

(√
log 4d

mbmax
+ 1
)2

+

8
3

(√
log 4d

mbmax
+ 1
)

+ 1
m3
bmax

((√
log 4d

mbmax
+ 1
)
mbmax

2
+ 1

4

)
+ 1

m2
bmax

+ 1
2mbmax

.

3.5. Performance of Greedy Bandit without Covariate Diversity

Thus far, we have shown that the greedy algorithm is rate optimal when there are only two arms

and in the presence of covariate diversity in the observed context distribution. However, when

these additional assumptions do not hold, the greedy algorithm may fail to converge to the true

arm parameters and achieve linear regret. We now show that a greedy approach achieves rate

optimal performance with some probability even when these assumptions do not hold. This result

will motivate the design of the Greedy-First algorithm in §4.
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Assumptions. For the rest of the paper, we allow the number of arms K > 2, and remove

Assumption 3 on covariate diversity. Instead, we will make the following weaker Assumption 4,

which is typically made in the contextual bandit literature2 (see e.g., Goldenshluger and Zeevi

2013, Bastani and Bayati 2020), which allows for multiple arms, and relaxes the assumption on

observed contexts (e.g., allowing for intercept terms in the arm parameters).

Assumption 4 (Positive-Definiteness). Let Kopt and Ksub be mutually exclusive sets that

include all K arms. Sub-optimal arms i∈Ksub satisfy x>βi <maxj 6=i x
>βj −h for some h> 0 and

every x ∈ X . On the other hand, each optimal arm i ∈ Kopt, has a corresponding set Ui = {x |

x>βi >maxj 6=i x
>βj +h}. Define Σi ≡E [XX>I(X ∈Ui)] for all i∈Kopt. Then, there exists λ1 > 0

such that for all i∈Kopt, λmin (Σi)≥ λ1 > 0.

Algorithm. We consider a small modification of the Greedy Bandit (Algorithm 1), by initializing

each arm parameter estimate with m > 0 random samples. Note that OLS requires at least d

samples for an arm parameter estimate to be well-defined, and Algorithm 1 does not update the

arm parameter estimates from the initial ad-hoc value of 0 until this stage is reached (i.e., the

covariance matrix X(Si,t)>X(Si,t) for a given arm i becomes invertible); thus, all actions up to

that point are essentially random. Consequently, we argue that initializing each arm parameter

with m= d samples at the beginning is qualitatively no different than Algorithm 1. We consider

general values of m to study how the probabilistic guarantees of the greedy algorithm vary with

the number of initial samples.

Remark 4. We note that there is a class of explore-then-exploit bandit algorithms that follow a

similar strategy of randomly sampling each arm for a length of time and using those estimates for

the remaining horizon (Bubeck and Cesa-Bianchi 2012). However, (i) m is a function of the horizon

length T in these algorithms (typically m=
√
T ) while we consider m to be a (small) constant with

respect to T , and (ii) these algorithms do not follow a greedy strategy since they do not update

the parameter estimates after the initialization phase.

Result. The following theorem shows that the Greedy Bandit converges to the correct policy

and achieves rate optimal performance with at least some problem-specific probability.

Theorem 2. Under Assumptions 1, 2, and 4, Greedy Bandit achieves logarithmic cumulative

regret with probability at least

Sgb(m,K,σ,xmax, λ1, h) := 1− inf
γ∈(0,1),δ>0,p≥Km+1

L(γ, δ, p) , (8)

2 This assumption is slightly different as stated than the assumptions made in prior literature; however, the assump-
tions are equivalent for bounded pX (Assumption 1).
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where the function L(γ, δ, p) is defined as

L(γ, δ, p) := 1−P
[
λmin(X>1:mX1:m)≥ δ

]K
+ 2Kd P

[
λmin(X>1:mX1:m)≥ δ

]
exp

{
− h2δ

8dσ2x2
max

}
+

p−1∑
j=Km+1

2d exp

{
− h2δ2

8d(j− (K − 1)m)σ2x4
max

}
+
d exp (−D1(γ)(p−m|Ksub|))

1− exp(−D1(γ))

+
2d exp (−D2(γ)(p−m|Ksub|))

1− exp(−D2(γ))
. (9)

Here X1:m denotes the matrix obtained by drawing m random samples from distribution pX , and

D1(γ) =
λ1(γ+ (1− γ) log(1− γ))

x2
max

, and D2(γ) =
λ2
1h

2(1− γ)2

8dσ2x4
max

. (10)

Proof Strategy. The proof of Theorem 2 is provided in Appendix F. We observe that if all

arm parameter estimates remain within a Euclidean distance of θ1 = h/(2xmax) from their true

values for all time periods t > Km, then the Greedy Bandit converges to the correct policy and

is rate optimal. We derive lower bounds on the probability that this event occurs using Lemma 5,

after proving suitable lower bounds on the minimum eigenvalue of the covariance matrices. The

key steps are as follows:

1. Assuming that the minimum eigenvalue of the sample covariance matrix for each arm is above

some threshold value δ > 0, we derive a lower bound on the probability that after initialization,

each arm parameter estimates lie within a ball of radius θ1 = h/(2xmax) centered around the

true arm parameter.

2. Next, we derive a lower bound on the probability that these estimates remain within this ball

after p≥Km+ 1 rounds for some choice of p.

3. We use the concentration result in Lemma 9 to derive a lower bound on the probability

that the minimum eigenvalue of the sample covariance matrix of each arm in Kopt is above

(1− γ)λ1(t−m|Ksub|) for any t≥ p.
4. We derive a lower bound on the probability that the estimates ultimately remain inside the

ball with radius θ1. This ensures that no sub-optimal arm is played for any t≥Km.

5. Summing up these probability terms implies Theorem 2. The parameters γ, δ, and p can be

chosen arbitrarily and we optimize over their choice.

The following Proposition 2 illustrates some of the properties of the function Sgb in Theorem 2

with respect to problem-specific parameters. The proof is provided in Appendix F.

Proposition 2. The function Sgb(m,K,σ,xmax, λ1, h) defined in Equation (8) is non-increasing

with respect to σ and K; it is non-decreasing with respect to m, λ1 and h. Furthermore, the limit

of this function when σ goes to zero is

P
[
λmin(X>1:mX1:m)> 0

]K
.
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In other words, the greedy algorithm is more likely to succeed when there is less noise and when

there are fewer arms; it is also more likely to succeed with additional initialization samples, when

the optimal arms each have a larger probability of being the best arm under pX , and when the

sub-optimal arms are worse than the optimal arms by a larger margin. Intuitively, these conditions

make it easier for the Greedy Bandit to avoid “dropping a good arm” early on, which would result

in its convergence to the wrong policy. As the noise goes to zero, the greedy algorithm always

succeeds as long as the sample covariance matrix for each of the K arms is positive definite after

the initialization periods.

In Corollary 2, we simplify the expression in Theorem 2 for better readability. However, the

simplified expression leads to poor tail bounds when m is close to d, while the general expression

in Theorem 2 works when m= d as demonstrated later in §4.3 (see Figure 1).

Corollary 2. Under the assumptions of Theorem 2, Greedy Bandit achieves logarithmic cumu-

lative regret with probability at least

1− 3Kd exp(−Dminm|Kopt|)
1− exp(−Dmin)

,

where function Dmin is defined as Dmin = min
{

0.153λ1
x2

max
,

λ2
1h

2

32dσ2x4
max

}
.

To summarize, these probabilistic guarantees on the success of Greedy Bandit suggest that

a greedy approach can be effective and rate optimal in general with at least some probability.

Therefore, in the next section, we introduce the Greedy-First algorithm which executes a greedy

strategy and only resorts to forced exploration when the observed data suggests that the greedy

updates are not converging. This helps eliminate unnecessary exploration with high probability.

4. Greedy-First Algorithm

As noted in Theorem 1, the optimality of the Greedy Bandit requires that there are only two arms

and that the context distribution satisfies covariate diversity. The latter condition rules out some

standard settings, e.g., the arm rewards cannot have an intercept term (since the addition of a

one to every context vector would violate Assumption 3). While there are many examples that

satisfy these conditions (see §2.2), the decision-maker may not know a priori whether a greedy

algorithm is appropriate for her particular setting. Thus, we introduce the Greedy-First algorithm

(Algorithm 3), which is rate optimal without these additional assumptions, but seeks to use the

greedy algorithm without forced exploration when possible.
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Algorithm 3 Greedy-First Bandit

Input parameters: λ0, t0
Initialize β̂(Si,0) at random for i∈ [K]
Initialize switch to R= 0
for t∈ [T ] do

if R 6= 0 then break
end if
Observe Xt ∼ pX
πt← arg maxiX

>
t β̂(Si,t−1) (break ties randomly)

Sπt,t←Sπt,t−1 ∪{t}
Play arm πt, observe Yi,t =X>t βπt + επt,t

Update arm parameter β̂(Sπt,t) =
[
X(Sπt,t)>X(Sπt,t)

]−1
X(Sπt,t)>Y(Sπt,t)

Compute covariance matrices Σ̂(Si,t) = X(Si,t)>X(Si,t) for i∈ [K]

if t > t0 and mini∈[K] λmin

(
Σ̂(Si,t)

)
< λ0t

4
then

Set R= t
end if

end for
Execute OLS Bandit for t∈ [R+ 1, T ]

4.1. Algorithm

The Greedy-First algorithm has two inputs λ0 and t0. It starts by following the greedy algorithm up

to time t0, after which it iteratively checks whether all the arm parameter estimates are converging

to their true values at a suitable rate. A sufficient statistic for checking this is simply the minimum

eigenvalue of the sample covariance matrix of each arm; if this value is above the threshold of λ0t/4,

then greedy estimates are converging with high probability. On the other hand, if this condition

is not met, the algorithm switches to a standard bandit algorithm with forced exploration. We

choose the OLS Bandit algorithm (introduced by Goldenshluger and Zeevi (2013) for two arms

and extended to the general setting by Bastani and Bayati (2020)), provided in Appendix E.

Remark 5. Greedy-First can switch to any contextual bandit algorithm (e.g., OFUL by Abbasi-

Yadkori et al. (2011) or Thompson sampling by Agrawal and Goyal (2013), Russo and Van Roy

(2018)) instead of the OLS Bandit. Then, the assumptions used in the theoretical analysis would be

replaced with analogous assumptions required by that algorithm. Our proof naturally generalizes

to adopt the assumptions and regret guarantees of the new algorithm when Greedy Bandit fails.

In practice, λ0 may be an unknown constant. Thus, we suggest the following heuristic routine

to estimate this parameter:

1. Execute Greedy Bandit for t0 time steps.

2. Estimate λ0 using the observed data via λ̂0 = 1
2t0

mini∈[K] λmin

(
Σ̂(Si,t0)

)
.

3. If λ̂0 = 0, this suggests that one of the arms is not receiving sufficient samples, and thus,

Greedy-First will switch to OLS Bandit immediately. Otherwise, execute Greedy-First for

t∈ [t0 + 1, T ] with λ0 = λ̂0.
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The pseudo-code for this heuristic is given in Appendix E. The regret guarantees of Greedy-First

(given in the next section) are always valid, but the choice of the input parameters may affect the

empirical performance of Greedy-First and the probability with which it remains exploration-free.

For example, if t0 is too small, then Greedy-First may incorrectly switch to OLS Bandit even when

a greedy algorithm will converge; thus, choosing t0�Kd is advisable.

4.2. Regret Analysis of Greedy-First

As noted in §3.5, we replace the more restrictive assumption on covariate diversity (Assumption

3) with a more standard assumption made in the bandit literature (Assumption 2). Theorem

3 establishes an upper bound of O(logT ) on the expected cumulative regret of Greedy-First.

Furthermore, we establish that Greedy-First remains purely greedy with high probability when

there are only two arms and covariate diversity is satisfied.

Theorem 3. The cumulative expected regret of Greedy-First at time T is at most

C logT + 2t0xmaxbmax , ,

where C = (K−1)CGB+COB, CGB is the constant defined in Theorem 1, and COB is the coefficient

of log(T ) in the upper bound of the regret of the OLS Bandit algorithm.

Furthermore, if Assumption 3 is satisfied (with the specified parameter λ0) and K = 2, then the

Greedy-First algorithm will purely execute the greedy policy (and will not switch to the OLS Bandit

algorithm) with probability at least 1− δ, where δ = 2d exp[−t0C1]/C1, and C1 = λ0/40x2
max. Note

that δ can be made arbitrarily small since t0 is an input parameter to the algorithm.

The key insight to this result is that the proof of Theorem 1 only requires Assumption 3 in the proof

of Lemma 4. The remaining steps of the proof hold without the assumption. Thus, if the conclusion

of Lemma 4, mini∈[K] λmin(Σ̂(Si,t))≥ λ0t
4

holds at every t ∈ [t0 + 1, T ], then we are guaranteed at

most O (logT ) regret by Theorem 1, regardless of whether Assumption 3 holds.

Proof of Theorem 3. First, we will show that Greedy-First achieves asymptotically optimal

regret. Note that the expected regret during the first t0 rounds is upper bounded by 2xmaxbmaxt0.

For the period [t0 +1, T ] we consider two cases: (1) the algorithm pursues a purely greedy strategy,

i.e., R= 0, or (2) the algorithm switches to the OLS Bandit algorithm, i.e., R ∈ [t0 + 1, T ].

Case 1: By construction, we know that mini∈[K] λmin

(
Σ̂(Si,t)

)
≥ λ0t/4, for all t > t0. This is

because Greedy-First only switches when the minimum eigenvalue of the sample covariance matrix

for some arm is less than λ0t/4. Therefore, if the algorithm does not switch, it implies that the

minimum eigenvalue of each arm’s sample covariance matrix is greater that or equal to λ0t/4 for

all values of t > t0. Then, the conclusion of Lemma 4 holds in this time range (Fλi,t holds for all

i∈ [K]). Consequently, even if Assumption 3 does not hold and K 6= 2, Lemma 6 holds and provides
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an upper bound on the expected regret rt. This implies that the regret bound of Theorem 1, after

multiplying by (K − 1), holds for Greedy-First. Therefore, Greedy-First is guaranteed to achieve

(K − 1)CGB log (T − t0) regret in the period [t0 + 1, T ] for some constant CGB that depends only

on pX , b and σ. Hence, the regret in this case is upper bounded by 2xmaxbmaxt0 + (K−1)CGB logT .

Case 2: Once again, by construction, we know that mini∈[K] λmin

(
Σ̂(Si,t)

)
≥ λ0t/4 for all t ∈

[t0+1,R] before the switch. Then, using the same argument as in Case 1, Theorem 1 guarantees that

we achieve at most (K−1)CGB log (R− t0) regret for some constant CGB over the interval [t0+1,R].

Next, Theorem 2 of Bastani and Bayati (2020) guarantees that, under Assumptions 1, 2 and 4, the

OLS Bandit’s cumulative regret in the interval t∈ [R+ 1, T ] is upper bounded by COB log (T −R)

for some constant COB. Thus, the total regret is at most 2xmaxbmaxt0 + ((K − 1)CGB +COB) logT .

Note that although the switching time R is a random variable, the upper bound on the cumulative

regret 2xmaxbmaxt0 + ((K − 1)CGB +COB) logT holds uniformly regardless of the value of R.

Thus, the Greedy-First algorithm always achieves O(logT ) cumulative regret. Next, we prove

that when Assumption 3 holds and K = 2, the Greedy-First algorithm maintains a purely greedy

policy with high probability. In particular, Lemma 4 states that if the specified λ0 satisfies

λmin (EX [XX>I(X>u≥ 0)])≥ λ0 for each vector u∈Rd, then at each time t,

P
[
λmin

(
Σ̂(Si,t)

)
≥ λ0t

4

]
≥ 1− exp [logd−C1t] ,

where C1 = λ0/40x2
max. Thus, by using a union bound over all K = 2 arms, the probability that the

algorithm switches to the OLS Bandit algorithm is at most

K
T∑

t=t0+1

exp [logd−C1t]≤ 2

∫ ∞
t0

exp [logd−C1t] dt=
2d

C1

exp [−t0C1] .

This concludes the proof. �

4.3. Probabilistic Guarantees for Greedy-First Algorithm

The key value proposition of Greedy-First is to reduce forced exploration when possible. Theorem

3 established that Greedy-First eliminates forced exploration entirely with high probability when

there are only two arms and when covariate diversity holds. However, a natural question might be

the extent to which Greedy-First reduces forced exploration in general problem instances.

To answer this question, we leverage the probabilistic guarantees we derived for the greedy

algorithm in §3.5. Note that unlike the greedy algorithm, Greedy-First always achieves rate optimal

regret. We now study the probability with which Greedy-First is purely greedy under an arbitrary

number of arms K and the less restrictive Assumption 2. However, we impose that all K arms

are optimal for some set of contexts under pX , i.e., Kopt = [K],Ksub = ∅. This is because Greedy-

First always switches to the OLS Bandit when an arm is sub-optimal across all contexts. In order
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for any algorithm to achieve logarithmic cumulative regret, sub-optimal arms must be assigned

fewer samples over time and thus, the minimum eigenvalue of the sample covariance matrices of

those arms cannot grow sufficiently fast; as a result, the Greedy-First algorithm will switch with

probability 1. This may be practically desirable as the decision-maker can decide whether to “drop”

the arm and proceed greedily or to use an exploration-based algorithm when the switch triggers.

Theorem 4. Let Assumptions 1, 2, and 4 hold and suppose that Ksub = ∅. Then, with probability

at least

Sgf(m,K,σ,xmax, λ1, h) = 1− inf
γ≤1−λ0/(4λ1),δ>0,Km+1≤p≤t0

L′(γ, δ, p) , (11)

Greedy-First remains purely greedy (does not switch to an exploration-based bandit algorithm) and

achieves logarithmic cumulative regret. The function L′ is closely related to the function L from

Theorem 2, and is defined as

L′(γ, δ, p) =L(γ, δ, p) + (K − 1)
d exp(−D1(γ)p)

1− exp(−D1(γ))
. (12)

The proof of Theorem 4 is provided in Appendix F. The steps followed are similar to that of

the proof of Theorem 2. In the third step of the proof strategy of Theorem 2 (see §3.5), we used

concentration results to derive a lower bound on the probability that the minimum eigenvalue of

the sample covariance matrix of all arms in Kopt are above (1−γ)λ1t for any t≥ p (note that we are

assuming Ksub = ∅ in this section). For Greedy Bandit, this result was only required for the played

arm; in contrast, for Greedy-First to remain greedy, all arms are required to have the minimum

eigenvalues of their sample covariance matrices above (1− γ)λ1t. This causes the difference in L

and L′ since we need a union bound over all K arms. The additional constraints on p ensure that

the Greedy-First algorithm does not switch,

The following Proposition 3 illustrates some of the properties of the function Sgf in Theorem 4

with respect to problem-specific parameters. The proof is provided in Appendix F.

Proposition 3. The function Sgf(m,K,σ,xmax, λ1, h) defined in Equation (11) is non-

increasing with respect to σ and K; it is non-decreasing with respect to λ1 and h. Furthermore, the

limit of this function when σ goes to zero is

P
[
λmin(X>1:mX1:m)> 0

]K − Kd exp(−D1(γ
∗)t0)

1− exp(−D1(γ∗))
,

where γ∗ = 1−λ0/(4λ1).

These relationships mirror those in Proposition 2, i.e., Greedy-First is more likely to remain

exploration-free when Greedy Bandit is more likely to succeed. In particular, Greedy-First is more

likely to avoid exploration entirely when there is less noise and when there are fewer arms; it is
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also more likely to avoid exploration with additional initialization samples and when the optimal

arms each have a larger probability of being the best arm under pX . Intuitively, these conditions

make it easier for the greedy algorithm to avoid “dropping” an arm, so the minimum eigenvalue

of each arm’s sample covariance matrix grows at a suitable rate over time, allowing Greedy-First

to remain greedy.

In Corollary 3, we simplify the expression in Theorem 4 for better readability. However, the

simplified expression leads to poor tail bounds when m is close to d, while the general expression

in Theorem 4 works when m= d as demonstrated in Figure 1.

Corollary 3. Under the assumptions made in Theorem 4, Greedy-First remains purely greedy

and achieves logarithmic cumulative regret with probability at least

1− 3Kd exp(−DminKm)

1− exp(−Dmin)
,

where the function Dmin is defined in Corollary 2.

We now illustrate the probabilistic bounds given in Theorems 2 and 4 through a simple example.

Example 1. Let K = 3 and d= 2. Suppose that arm parameters are given by β1 = (1,0), β2 =

(−1/2,
√

3/2) and β3 = (−1/2,−
√

3/2). Furthermore, suppose that the distribution of covariates

pX is the uniform distribution on the unit ball B2
1 = {x ∈ R2 | ‖x‖ ≤ 1}, implying xmax = 1. The

constants h and λ1 are chosen to satisfy Assumption 4; here, we choose h= 0.3, and λ1 ≈ 0.025.

We then numerically plot our lower bounds on the probability of success of the Greedy Bandit

(Theorem 2) and on the probability that Greedy-First remains greedy (Theorem 4) via Equations

(8) and (11) respectively. Figure 1 depicts these probabilities as a function of the noise σ for several

values of initialization samples m.

We note that our lower bounds are very conservative, and in practice, both Greedy Bandit and

Greedy-First succeed and remain exploration-free respectively with much larger probability. For

instance, as observed in Example 1, one can optimize over the choice of λ1 and h. In the next

section, we verify via simulations that both Greedy Bandit and Greedy-First are successful with a

higher probability than our lower bounds may suggest.

5. Simulations

We now validate our theoretical findings on synthetic and real datasets.

5.1. Synthetic Data

Linear Reward. We compare Greedy Bandit and Greedy-First with state-of-the-art contextual

bandit algorithms. These include:
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Figure 1 Lower (theoretical) bound on the probability of success for Greedy Bandit and Greedy-First. For m=

20, t0 = 1000, the performance of Greedy-First for λ0 ∈ {0.01,0.0001} are similar and indistinguishable.

1. OFUL by Abbasi-Yadkori et al. (2011), which builds on the original upper confidence bound

(UCB) approach of Lai and Robbins (1985),

2. Prior-dependent TS by Russo and Van Roy (2014), which builds on the original Thompson

sampling approach of Thompson (1933),

3. Prior-free TS by Agrawal and Goyal (2013), which builds on the original Thompson sampling

approach of Thompson (1933), and

4. OLS Bandit by Goldenshluger and Zeevi (2013), which builds on ε-greedy methods.

Prior-dependent TS requires knowledge of the prior distribution of arm parameters βi, while

prior-free TS does not. All algorithms require knowledge of an upper bound on the noise variance

σ. Following the setup of Russo and Van Roy (2014), we consider Bayes regret over randomly-

generated arm parameters. In particular, for each scenario, we generate 1000 problem instances

and sample the true arm parameters {βi}Ki=1 independently. At each time step within each instance,

new context vectors are drawn i.i.d. from a fixed context distribution pX . We then plot the average

Bayes regret across all these instances, along with the 95% confidence interval, as a function of

time t with a horizon length T = 10,000. We take K = 2 and d= 3 (see Appendix G for simulations

with other values of K and d). The noise variance σ2 = 0.25.

We consider four different scenarios, varying (i) whether covariate diversity holds, and (ii)

whether algorithms have knowledge of the true prior. The first condition allows us to explore how

the performance of Greedy Bandit and Greedy-First compare against benchmark bandit algorithms
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when conditions are favorable / unfavorable for the greedy approach. The second condition helps

us understand how knowledge of the prior distribution and noise variance affects the performance

of benchmark algorithms relative to Greedy Bandit and Greedy-First (which do not require this

knowledge). When the correct prior is provided, we assume that OFUL and both versions of TS

know the noise variance.

Context vectors: For scenarios where covariate diversity holds, we sample the context vectors

from a truncated Gaussian distribution, i.e., 0.5×N(0d, Id) truncated to have `∞ norm at most 1.

For scenarios where covariate diversity does not hold, we generate the context vectors the same

way but we add an intercept term.

Arm parameters and prior: For scenarios where the algorithms have knowledge of the true prior,

we sample the arm parameters {βi} independently from N(0d, Id), and provide all algorithms with

knowledge of σ, and prior-dependent TS with the additional knowledge of the true prior distribution

of arm parameters. For scenarios where the algorithms do not have knowledge of the true prior, we

sample the arm parameters {βi} independently from a mixture of Gaussians, i.e., they are sampled

from the distribution 0.5×N(1d, Id) with probability 0.5 and from the distribution 0.5×N(−1d, Id)

with probability 0.5. However, prior-dependent TS is given the following incorrect prior distribution

over the arm parameters: 10×N(0d, Id). The OLS Bandit parameters are set to h= 5, q = 1, and

t0 = 4Kd for Greedy-First. None of the algorithms in this scenario are given knowledge of σ; rather,

this parameter is sequentially estimated over time using past data within the algorithm.

Results. Figure 2 shows the cumulative Bayes regret of all the algorithms for the four different

scenarios discussed above (with and without covariate diversity, with and without the true prior).

When covariate diversity holds (a-b), the Greedy Bandit is the clear frontrunner, and Greedy-First

achieves the same performance since it never switches to OLS Bandit. However, when covariate

diversity does not hold (c-d), we see that the Greedy Bandit performs very poorly (achieving linear

regret), but Greedy-First is the clear frontrunner. This is because the greedy algorithm succeeds a

significant fraction of the time (Theorem 2), but fails on other instances. Thus, always following the

greedy algorithm yields poor performance, but a standard bandit algorithm like the OLS Bandit

explores unnecessarily in the instances where a greedy algorithm would have sufficed. Greedy-First

leverages this observation by only exploring (switching to OLS Bandit) when the greedy algorithm

has likely failed, thereby outperforming both Greedy Bandit and OLS Bandit. Thus, Greedy-First

provides a desirable compromise between avoiding exploration and learning the true policy.

Logistic Reward. We now move beyond linear rewards and explore how the performance of

Greedy Bandit (Algorithm 2) compares to other bandit algorithms for GLM rewards when covariate

diversity holds. We compare to the state-of-the-art GLM-UCB algorithm (Filippi et al. 2010),
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(a) Correct prior and covariate diversity. (b) Incorrect prior and covariate diversity.

(c) Correct prior and no covariate diversity.
(d) Incorrect prior and no covariate diver-

sity.
Figure 2 Expected regret of all algorithms on synthetic data in four different regimes for the covariate diversity

condition and whether OFUL and TS are provided with correct or incorrect information on true prior

distribution of the parameters. Out of 1000 runs of each simulation Greedy-First never switched in (a)

and (b) and switched only 69 times in (c) and 139 times in (d).

which is designed to handle GLM reward functions unlike the bandit algorithms from the previous

section. Our reward is logistic, i.e, Yit = 1 with probability 1/[1 + exp(−X>t βi)] and is 0 otherwise.

We again consider Bayes regret over randomly-generated arm parameters. For each scenario, we

generate 10 problem instances (due to the computational burden of solving a maximum likelihood

estimation step in each iteration) and sample the true arm parameters {βi}Ki=1 independently. At

each time step within each instance, new context vectors are drawn i.i.d. from a fixed context

distribution pX . We then plot the average Bayes regret across all these instances, along with the

95% confidence interval, as a function of time t with a horizon length T = 2,000. Once again, we
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sample the context vectors from a truncated Gaussian distribution, i.e., 0.5×N(0d, Id) truncated

to have `2 norm at most xmax. Note that this context distribution satisfies covariate diversity. We

take K = 2, and we sample the arm parameters {βi} independently from N(0d, Id). We consider

two different scenarios for d and xmax. In the first scenario, we take d= 3, xmax = 1; in the second

scenario, we take d= 10, xmax = 5.

(a) d= 3, xmax = 1 (b) d= 10, xmax = 5

Figure 3 Expected regret of GLM-GB and GLM-UCB on synthetic data for logistic reward

Results: Figure 3 shows the cumulative Bayes regret of the Greedy Bandit and GLM-UCB

algorithms for the two different scenarios discussed above. As is evident from these results, the

Greedy Bandit far outperforms GLM-UCB. We suspect that this is due to the conservative con-

struction of confidence sets in GLM-UCB, particularly for large values of d and xmax. In par-

ticular, the radius of the confidence set in GLM-UCB is proportional to (infz∈C µ
′(z))−1 where

C = {z | z ∈ [−xmaxbmax, xmaxbmax]}. Hence, the radius of the confidence set scales as exp(xmaxbmax),

which is exponentially large in xmax. This can be seen from the difference in Figure 3 (a) and (b);

in (b),xmax is much larger, causing GLM-UCB’s performance to severely degrade. Although the

same quantity appears in the theoretical analysis of Greedy Bandit for GLM (Proposition 1), the

empirical performance of Greedy Bandit appears much better.

Additional Simulations. We explore the performance of Greedy Bandit as a function of K

and d; we find that the performance of Greedy Bandit improves dramatically as the dimension

d increases, while it degrades with the number of arms K (as predicted by Proposition 2). We

also study the dependence of the performance of Greedy-First on the input parameters t0 (which

determines when to switch) and h, q (which are inputs to OLS Bandit after switching); we find that
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the performance of Greedy-First is quite robust to the choice of inputs. Note that Greedy Bandit

is entirely parameter-free. These simulations can be found in Appendix G.

5.2. Simulations on Real Datasets

We now explore the performance of Greedy and Greedy-First with respect to competing algorithms

on real datasets. As mentioned earlier, Bietti et al. (2018) performed an extensive empirical study of

contextual bandit algorithms on 524 datasets that are publicly available on the OpenML platform,

and found that the greedy algorithm outperforms a wide range of bandit algorithms in cumulative

regret on more that 400 datasets. We take a closer look at 3 healthcare-focused datasets ((a) EEG,

(b) Eye Movement, and (c) Cardiotocography) among these. We also study the (d) warfarin dosing

dataset (Consortium 2009), a publicly available patient dataset that was used by Bastani and

Bayati (2020) for analyzing contextual bandit algorithms.

Setup: These datasets all involve classification tasks using patient features. Accordingly, we take

the number of decisions K to be the number of classes, and consider a binary reward (1 if we

output the correct class, and 0 otherwise). The dimension of the features for datasets (a)-(d) is 14,

27, 35 and 93 respectively; similarly, the number of arms is 2, 3, 3, and 3 respectively.

Remark 6. Note that we are now evaluating regret rather than Bayes regret. This is because our

arm parameters are given by the true data, and are not simulated from a known prior distribution.

We compare to the same algorithms as in the previous section, i.e., OFUL, prior-dependent TS,

prior-free TS, and OLS Bandit. As an additional benchmark, we also include an oracle policy,

which uses the best linear model trained on all the data in hindsight; thus, one cannot perform

better than the oracle policy using linear models on these datasets.

Results: In Figure 4, we plot the regret (averaged over 100 trials with randomly permuted

patients) as a function of the number of patients seen so far, along with the 95% confidence inter-

vals. First, in both datasets (a) and (b), we observe that Greedy Bandit and Greedy-First perform

the best; Greedy-First recognizes that the greedy algorithm is converging and does not switch to an

exploration-based strategy. In dataset (c), the Greedy Bandit gets “stuck” and does not converge

to the optimal policy on average. Here, Greedy-First performs the best, followed closely by the

OLS Bandit. This result is similar to our results in Fig 2 (c-d), but in this case, exploration appears

to be necessary in nearly all instances, explaining the extremely close performance of Greedy-First

and OLS Bandit. Finally, in dataset (d), we see that the Greedy Bandit performs the best, followed

by Greedy-First. An interesting feature of this dataset is that one arm (high dose) is optimal for a

very small number of patients; thus, dropping this arm entirely leads to better performance over a

short horizon than attempting to learn its parameter. In this case, Greedy Bandit is not converging

to the optimal policy since it never assigns any patient the high dose. However, Greedy-First recog-

nizes that the high-dose arm is not getting sufficient samples and switches to an exploration-based

http://www.openml.org
https://www.openml.org/d/1471
https://www.openml.org/d/1044
https://www.openml.org/d/1466
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(a) EEG dataset (b) Eye Movement dataset

(c) Cardiotocography dataset (d) Warfarin dataset

Figure 4 Expected regret of all algorithms on four real healthcare datasets.

algorithm. As a result, Greedy-First performs worse than the Greedy Bandit. However, if the hori-

zon were to be extended3, Greedy-First and the other bandit algorithms would eventually overtake

the Greedy Bandit. Alternatively, for non-binary reward functions (e.g., when cost of a mistake for

high-dose patients is larger than for other patients) Greedy Bandit would perform poorly.

Looking at these results as a whole, we see that Greedy-First is a robust frontrunner. When

exploration is unnecessary, it matches the performance of the Greedy Bandit; when exploration is

necessary, it matches or outperforms competing bandit algorithms.

3 Our horizon is limited by the number of patients available in the dataset.
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6. Conclusions and Discussions

We prove that a greedy algorithm can be rate optimal in cumulative regret for a two-armed contex-

tual bandit as long as the contexts satisfy covariate diversity. Greedy algorithms are significantly

preferable when exploration is costly (e.g., result in lost customers for online advertising or A/B

testing) or unethical (e.g., personalized medicine or clinical trials). Furthermore, the greedy algo-

rithm is entirely parameter-free, which makes it desirable in settings where tuning is difficult or

where there is limited knowledge of problem parameters. Despite its simplicity, we provide empirical

evidence that the greedy algorithm can outperform standard contextual bandit algorithms when

the contexts satisfy covariate diversity. Even when the contexts do not satisfy covariate diversity,

we prove that a greedy algorithm is rate optimal with some probability, and provide lower bounds

on this probability. However, in many scenarios, the decision-makers may not know whether their

problem instance is amenable to a greedy approach, and may still wish to ensure that their algo-

rithm provably converges to the correct policy. In this case, the decision-maker may under-explore

by using a greedy algorithm, while a standard bandit algorithm may over-explore (since the greedy

algorithm converges to the correct policy with some probability in general). Consequently, we pro-

pose the Greedy-First algorithm, which follows a greedy policy in the beginning and only performs

exploration when the observed data indicate that exploration is necessary. Greedy-First is rate

optimal without the covariate diversity assumption. More importantly, it remains exploration-free

when covariate diversity is satisfied, and may provably reduce exploration even when covariate

diversity is not satisfied. Our empirical results suggest that Greedy-First outperforms standard

bandit algorithms (e.g., UCB, Thompson Sampling, and ε-greedy methods) by striking a balance

between avoiding exploration and converging to the correct policy.
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Appendix A: Properties of Covariate Diversity

Lemma 1 If there exists a set W ⊂ Rd that satisfies conditions (a), (b), and (c) given below, then pX

satisfies Assumption 3.

(a) W is symmetric around the origin; i.e., if x∈W then −x∈W .

(b) There exist positive constants a, b∈R such that for all x∈W , a · pX(−x)≤ b · pX(x).

(c) There exists a positive constant λ such that
∫
W

xx>pX(x)dx � λId. For discrete distributions, the

integral is replaced with a sum.

Proof of Lemma 1. Since for all u∈Rd at least one of x>u≥ 0 or −x>u≥ 0 holds, and using conditions

(a), (b), and (c) of Lemma 1 we have:∫
xx>I(x>u≥ 0)pX(x)dx�

∫
W

xx>I(x>u≥ 0)pX(x)dx

=
1

2

∫
W

xx>
[
I(x>u≥ 0)pX(x) + I(−x>u≥ 0)pX(−x)

]
dx

� 1

2

∫
W

xx>
[
I(x>u≥ 0) +

a

b
I(x>u≤ 0)

]
pX(x)dx

� a

2b

∫
W

xx>pX(x)dx

� aλ

2b
Id .

Here, the first inequality follows from the fact that xx> is positive semi-definite, the first equality follows

from condition (a) and a change of variable (x→−x), the second inequality is by condition (b), the third

inequality uses a≤ b which follows from condition (b), and the last inequality uses condition (c). �

We now state the proofs of lemmas that were used in §2.2.

Lemma 2 For any R> 0 we have
∫
Bd
R

xx>dx =
[
R2

d+2
vol(Bd

R)
]
Id.

Proof of Lemma 2. First note that Bd
R is symmetric with respect to each axis, therefore the off-diagonal

entries in
∫
Bd
R

xx>dx are zero. In particular, the (i, j) entry of the integral is equal to
∫
Bd
R
xixjdx which is

zero when i 6= j using a change of variable xi →−xi that has the identity as its Jacobian and keeps the

domain of integral unchanged but changes the sign of xixj . Also, by symmetry, all diagonal entry terms are

equal. In other words, ∫
Bd
R

xx>dx =

(∫
Bd
R

x2
1dx

)
Id . (13)

Now for computing the right hand side integral, we introduce the spherical coordinate system as

x1 = r cosθ1,

x2 = r sinθ1 cosθ2,

...

xd−1 = r sinθ1 sinθ2 . . . sinθd−2 cosθd−1,

xd = r sinθ1 sinθ2 . . . sinθd−2 sinθd−1,
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and the determinant of its Jacobian is given by

detJ(r,θ) = det

[
∂x

∂r∂θ

]
= rd−1 sind−2 θ1 sind−3 θ2 . . . sinθd−2.

Now, using symmetry, and summing up equation (13) with x2
i used instead of x2

1 for all i∈ [d], we obtain

d

∫
Bd
R

xx>dx =

∫
Bd
R

(
x2

1 +x2
2 + . . .+x2

d

)
dx1dx2 . . .dxd

=

∫
θ1,...,θd−1

∫ R

r=0

rd+1 sind−2 θ1 sind−3 θ2 . . . sinθd−2 dr dθ1 . . .dθd−1 .

Comparing this to

vol(Bd
R) =

∫
θ1,...,θd−1

∫ R

r=0

rd−1 sind−2 θ1 sind−3 θ2 . . . sinθd−2 drdθ1 . . .dθd−1 ,

we obtain that ∫
Bd
R

xx>dx =

[ ∫ R
0
rd+1dr

d
∫ R

0
rd−1dr

vol(Bd
R)

]
Id

=

[
R2

d+ 2
vol(Bd

R)

]
Id .

�

Lemma 7. The following inequality holds∫
Bdxmax

xx>pX,trunc(x)dx� λuniId ,

where λuni ≡ 1
(2π)d/2|Σ|d/2 exp

(
− x2max

2λmin(Σ)

)
x2max

d+2
vol(Bd

xmax
).

Proof of Lemma 7. We can lower-bound the density pX,trunc by the uniform density as follows. Note that

we have x>Σ−1x≤ ‖x‖22λmax (Σ−1) and as a result for any x satisfying ‖x‖2 ≤ xmax we have

pX,trunc(x)≥ pX(x) =
1

(2π)d/2|Σ|d/2
exp

(
−1

2
x>Σ−1x

)
≥

exp
(
− x2max

2λmin(Σ)

)
(2π)d/2|Σ|d/2

= pX,uniform-lb .

Using this we can derive a lower bound on the desired covariance as following∫
Bdxmax

xx>pX,trunc(x)dx�
∫
Bdxmax

xx>pX,uniform-lb(x)dx

=
1

(2π)d/2|Σ|d/2
exp

(
− x2

max

2λmin(Σ)

)∫
Bdxmax

xx>dx

=
1

(2π)d/2|Σ|d/2
exp

(
− x2

max

2λmin(Σ)

)
x2

max

d+ 2
vol(Bd

xmax
)Id

= λuniId ,

where we used Lemma 2 in the third line. This concludes the proof. �
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Appendix B: Useful Concentration Results

Lemma 8 (Bernstein Concentration). Let {Dk,Hk}∞k=1 be a martingale difference sequence, and let

Dk be σk-subgaussian. Then, for all t > 0 we have

P

[∣∣∣ n∑
k=1

Dk

∣∣∣≥ t]≤ 2 exp

{
− t2

2
∑n

k=1 σ
2
k

}
.

Proof of Lemma 8. See Theorem 2.3 of Wainwright (2019) and let bk = 0 and νk = σk for all k. �

Lemma 9 (Theorem 3.1 of Tropp (2011)). Let H1 ⊂ H2 · · · be a filtration and consider a finite

sequence {Xk} of positive semi-definite matrices with dimension d adapted to this filtration. Suppose that

λmax(Xk)≤R almost surely. Define the series Y ≡
∑

k
Xk and W ≡

∑
k
E[Xk | Hk−1]. Then for all µ≥ 0, γ ∈

[0,1) we have:

P [λmin(Y )≤ (1− γ)µ and λmin(W )≥ µ]≤ d
(

e−γ

(1− γ)1−γ

)µ/R
.

Appendix C: Proof of Theorem 1

We first prove a lemma on the instantaneous regret of the Greedy Bandit using a standard peeling argument.

The proof is adapted from Bastani and Bayati (2020) with a few modifications.

Notation. We define the following events to simplify notation. For any λ,χ> 0, let

Fλi,t =
{
λmin

(
X(Si,t)>X(Si,t)

)
≥ λt

}
(14)

Gχi,t =
{
‖β̂(Si,t)−βi‖2 <χ

}
. (15)

Lemma 6 The instantaneous expected regret of the Greedy Bandit at time t≥ 2 satisfies

rt(π)≤ 4(K − 1)C0C̄x
2
max(logd)3/2

C3

1

t− 1
+ 4(K − 1)bmaxxmax

(
max
i

P[Fλ0/4
i,t−1]

)
,

where C3 = λ2
0/(32dσ2x2

max), C0 is defined in Assumption 2, and C̄ is defined in Theorem 1.

Proof of Lemma 6. We can decompose the regret as rt(π) = E[Regrett(π)] =
∑K

i=1 E[Regrett(π) | Xt ∈

Ri] ·P(Xt ∈Ri). Now we can expand each term as

E[Regrett(π) |Xt ∈Rl] = E
[
X>t (βl−βπt) |Xt ∈Rl

]
.

For each 1≤ i, l≤K satisfying i 6= l, let us define the region where arm i is superior over arm l

R̂i≥l,t :=
{

x∈X : x>β̂(Si,t−1)≥ x>β̂(Sl,t−1)
}
.

Note that we may incur a nonzero regret if X>t β̂(Sπt,t−1)>X>t β̂(Sl,t−1) or if X>t β̂(Sπt,t−1) =X>t β̂(Sl,t−1)

and the tie-breaking random variable Wt indicates an action other than l as the action to be taken. It is

worth mentioning that in the case X>t β̂(Sπt,t−1) =X>t β̂(Sl,t−1) we do not incur any regret if Wt indicates

arm l as the action to be taken. Nevertheless, as regret is a non-negative quantity, we can write

E[Regrett(π) |Xt ∈Rl]≤E
[
I(X>t β̂(Sπt,t−1)≥X>t β̂(Sl,t−1))X>t (βl−βπt) |Xt ∈Rl

]
≤
∑
i 6=l

E
[
I(X>t β̂(Si,t−1)≥X>t β̂(Sl,t−1))X>t (βl−βi) |Xt ∈Rl

]
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=
∑
i6=l

E
[
I(Xt ∈ R̂i≥l,t)X>t (βl−βi) |Xt ∈Rl

]
≤
∑
i6=l

{
E
[
I(R̂i≥l,t,Fλ0/4

l,t−1,F
λ0/4
i,t−1)X>t (βl−βi) |Xt ∈Rl

]
+E

[
I(Xt ∈ R̂i≥l,t,Fλ0/4

l,t−1)X>t (βl−βi) |Xt ∈Rl
]

+E
[
I(Xt ∈ R̂i≥l,t,Fλ0/4

i,t−1)X>t (βl−βi) |Xt ∈Rl
]}

≤
∑
i6=l

{
E
[
I(Xt ∈ R̂i≥l,t,Fλ0/4

l,t−1,F
λ0/4
i,t−1)X>t (βl−βi) |Xt ∈Rl

]
+ 2bmaxxmax

(
P(Fλ0/4

l,t−1) +P(Fλ0/4
i,t−1)

)}
≤
∑
i6=l

E
[
I(Xt ∈ R̂i≥l,t,Fλ0/4

l,t−1,F
λ0/4
i,t−1)X>t (βl−βi) |Xt ∈Rl

]
+ 4(K − 1)bmaxxmax max

i
P(Fλ0/4

i,t−1) (16)

where in the second line we used a union bound, in the sixth line we used the fact that Fλ0/4
i,t−1 and Fλ0/4

l,t−1 are

independent of the event Xt ∈Rl which only depends on Xt, and also a Cauchy-Schwarz inequality showing

X>t (βl−βi)≤ 2bmaxxmax. Therefore, we need to bound the first term in above. Fix i and note that when we

include events Fλ0/4
i,t−1 and Fλ0/4

l,t−1, we can use Lemma 5 which proves sharp concentrations for β̂(Sl,t−1) and

β̂(Si,t−1). Let us now define the following set

Ih = {x∈X : x>(βl−βi)∈ (2δxmaxh,2δxmax(h+ 1)]},

where δ = 1/
√

(t− 1)C3. Note that since X>t (βl−βi) is bounded above by 2bmaxxmax, the set Ih only needs to

be defined for h≤ hmax = dbmax/δe. We can now expand the first term in Equation (16) for i, by conditioning

on Xt ∈ Ih as following

E
[
I(Xt ∈ R̂i≥l,t,Fλ0/4

l,t−1,F
λ0/4
i,t−1)X>t (βl−βi) |Xt ∈Rl

]
=
hmax∑
h=0

E
[
I(Xt ∈ R̂i≥l,t,Fλ0/4

l,t−1,F
λ0/4
i,t−1)X>t (βl−βi) |Xt ∈Rl ∩ Ih

]
P[Xt ∈ Ih]

≤
hmax∑
h=0

2δxmax(h+ 1)E
[
I(Xt ∈ R̂i≥l,t,Fλ0/4

l,t−1,F
λ0/4
i,t−1) |Xt ∈Rl ∩ Ih

]
P[Xt ∈ Ih]

≤
hmax∑
h=0

2δxmax(h+ 1)E
[
I(Xt ∈ R̂i≥l,t,Fλ0/4

l,t−1,F
λ0/4
i,t−1) |Xt ∈Rl ∩ Ih

]
P[X>t (βl−βi)∈ (0,2δxmax(h+ 1)]]

≤
hmax∑
h=0

4C0δ
2x2

max(h+ 1)2P
[
Xt ∈ R̂i≥l,t,Fλ0/4

l,t−1,F
λ0/4
i,t−1 |Xt ∈Rl ∩ Ih

]
, (17)

where in the first inequality we used the fact that conditioning on Xt ∈ Ih, X>t (βl − βi) is bounded above

by 2δxmax(h + 1), in the second inequality we used the fact that the event Xt ∈ Ih is a subset of the

event X>t (βl − βi) ∈ (0,2δxmax(h + 1)], and in the last inequality we used the margin condition given in

Assumption 2. Now we reach to the final part of the proof, where conditioning on Fλ0/4
l,t−1,F

λ0/4
i,t−1, and Xt ∈ Ih

we want to bound the probability that we pull a wrong arm. Note that conditioning on Xt ∈ Ih, the event
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X>t

(
β̂(Si,t−1)− β̂(Sl,t−1)

)
≥ 0 happens only when at least one of the following two events: i) X>t (βl −

β̂(Sl,t−1))≥ δxmaxh or ii) X>t (β̂(Si,t−1)−βi)≥ δxmaxh happens. This is true according to

0≤X>t
(
β̂(Si,t−1)− β̂(Sl,t−1)

)
=X>t (β̂(Si,t−1)−βi) +X>t (βi−βl) +X>t (βl− β̂(Sl,t−1))

≤X>t (β̂(Si,t−1)−βi)− 2δxmaxh+X>t (βl− β̂(Sl,t−1)) .

Therefore,

P
[
I(Xt ∈ R̂i≥l,t,Fλ0/4

l,t−1,F
λ0/4
i,t−1) |Xt ∈Rl ∩ Ih

]
≤ P

[
X>t (βl− β̂(Sl,t−1))≥ δxmaxh,Fλ0/4

l,t−1,F
λ0/4
i,t−1 |Xt ∈Rl ∩ Ih

]
+P

[
X>t (β̂(Si,t−1)−βi)≥ δxmaxh,Fλ0/4

l,t−1,F
λ0/4
i,t−1 |Xt ∈Rl ∩ Ih

]
≤ P

[
X>t (βl− β̂(Sl,t−1))≥ δxmaxh,Fλ0/4

l,t−1 |Xt ∈Rl ∩ Ih
]

+P
[
X>t (β̂(Si,t−1)−βi)≥ δxmaxh,Fλ0/4

i,t−1 |Xt ∈Rl ∩ Ih
]

≤ P
[
‖βl− β̂(Sl,t−1)‖2 ≥ δh,Fλ0/4

l,t−1 |Xt ∈Rl ∩ Ih
]

+P
[
‖β̂(Si,t−1)−βi‖2 ≥ δh,Fλ0/4

i,t−1 |Xt ∈Rl ∩ Ih
]
, (18)

where in the third line we used P (A,B |C)≤ P (A |C), in the fourth line we used Cauchy-Schwarz inequality.

Now using the notation described in Equation (15) this can be rewritten as

P
[
Gδhl,t−1,F

λ0/4
l,t−1 |Xt ∈Rl ∩ Ih

]
+P

[
Gδhi,t−1,F

λ0/4
i,t−1 |Xt ∈Rl ∩ Ih

]
= P

[
Gδhl,t−1,F

λ0/4
l,t−1

]
+P

[
Gδhi,t−1,F

λ0/4
i,t−1

]
≤ 4d exp

(
−C3(t− 1)(δh)2

)
= 4d exp(−h2),

in the fifth line we used the fact that both Rl and Ih only depend on Xt which is independent of β̂(Sq,t−1)

for all q, and in the sixth line we used Lemma 5. We can also bound this probability by 1, which is better

than 4d exp(−h2) for small values of h. Hence, using
∑K

l=1 P[Rl] = 1 we can write the regret as

E[Regrett(π)] =

K∑
l=1

E[Regrett(π) |Xt ∈Rl] ·P(Xt ∈Rl)

≤
K∑
l=1

(∑
i 6=l

hmax∑
h=0

[
4C0δ

2x2
max(h+ 1)2 min{1,4d exp(−h2)}

]
+ 4(K − 1)bmaxxmax max

i
P(Fλ0/4

i,t−1)

)
P(Xt ∈Rl)

≤ 4(K − 1)C0δ
2x2

max

(
hmax∑
h=0

(h+ 1)2 min{1,4d exp(−h2)}

)
+ 4(K − 1)bmaxxmax max

i
P(Fλ0/4

i,t−1)

≤ 4(K − 1)

(
C0δ

2x2
max

(
h0∑
h=0

(h+ 1)2 +

hmax∑
h=h0+1

4d(h+ 1)2 exp(−h2)

)
+ bmaxxmax max

i
P(Fλ0/4

i,t−1)

)
, (19)

where we take h0 = b
√

log 4dc+ 1. Note that functions f(x) = x2 exp(−x2) and g(x) = x exp(−x2) are both

decreasing for x≥ 1 and therefore

hmax∑
h=h0+1

(h+ 1)2 exp(−h2) =

hmax∑
h=h0+1

(h2 + 2h+ 1) exp(−h2)
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=

hmax∑
h=h0+1

h2 exp(−h2) + 2

hmax∑
h=h0+1

h exp(−h2) +

hmax∑
h=h0+1

exp(−h2)

≤
∫ ∞
h0

h2 exp(−h2)dh+

∫ ∞
h0

2h exp(−h2)dh+

∫ ∞
h0

exp(−h2)dh. (20)

Computing the above terms using integration by parts and using the inequality
∫∞
t

exp(−x2)dx ≤
exp(−t2)/(t+

√
t2 + 4/π) yields

h0∑
h=0

(h+ 1)2 + 4d

hmax∑
h=h0+1

(h+ 1)2 exp(−h2)

=
(h0 + 1)(h0 + 2)(2h0 + 3)

6
+ d(2h0 + 7) exp(−h2

0)

≤ 1

3
h3

0 +
3

2
h2

0 +
13

6
h0 + 1 + d(2h0 + 7)

1

4d

≤ 1

3

(√
log 4d+ 1

)3

+
3

2

(√
log 4d+ 1

)2

+
8

3

(√
log 4d+ 1

)
+

11

4

≤
(√

logd+ 2
)3

+
3

2

(√
logd+ 2

)2

+
8

3

(√
logd+ 2

)
+

11

4

=
1

3
(logd)

3/2
+

7

2
logd+

38

3
(logd)1/2 +

67

4

≤ (logd)
3/2

(
(
1

3
+

7

2
(logd)−0.5 +

38

3
(logd)−1 +

67

4
(logd)−1.5

)
≤ (logd)3/2C̄

where C̄ is defined as (4). By replacing this in (19) and substituting δ = 1/
√

(t− 1)C3 we get

rt(π) = E[Regrett(π)]≤ 4(K − 1)C0C̄x
2
max(logd)3/2

C3

1

t− 1
+ 4(K − 1)bmaxxmax

(
max
i

P[Fλ0/4
i,t−1]

)
as desired. �

Having this lemma proved, it is now fairly straightforward to prove Theorem 1.

Proof of Theorem 1. The expected cumulative regret is the sum of expected regret for times up to time

T . As the regret term at time t= 1 is upper bounded by 2xmaxbmax and as K = 2, by using Lemma 4 and

Lemma 6 we can write

RT (π) =

T∑
t=1

rt(π)

≤ 2xmaxbmax +

T∑
t=2

[
4C0C̄x

2
max(logd)3/2

C3

1

t− 1
+ 4bmaxxmaxd exp(−C1(t− 1))

]

= 2xmaxbmax +

T−1∑
t=1

[
4C0C̄x

2
max(logd)3/2

C3

1

t
+ 4bmaxxmaxd exp(−C1t)

]
≤ 2xmaxbmax +

4C0C̄x
2
max(logd)3/2

C3

(1 +

∫ T

1

1

t
dt) + 4bmaxxmaxd

∫ ∞
1

exp(−C1t)dt

= 2xmaxbmax +
4C0C̄x

2
max(logd)3/2

C3

(1 + logT ) +
4bmaxxmaxd

C1

=
128C0C̄x

4
maxσ

2d(logd)3/2

λ2
0

logT +

(
2xmaxbmax +

128C0C̄x
4
maxσ

2d(logd)3/2

λ2
0

+
160bmaxx

3
maxd

λ0

)
=O(logT ),

finishing up the proof. �
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Appendix D: General margin condition and nonlinear rewards

D.1. Proof of Corollary 1

We now analyze the regret of Greedy Bandit for more general values of the margin condition parameter α

satisfied by the context probability density pX (recall Definition 2 in §2.1).

Proof of Corollary 1. This corollary is easily implied from Lemma 6 and Theorem 1 with a very slight

modification. Note that all the arguments in Lemma 6 hold and the only difference is where we want to

bound the probability P[Xt ∈ Ih] in Equation (17). In this Equation, if we use the α-margin bound as

P[X>t (βl−βi)∈ (0,2δxmax(h+ 1)]]≤C (2δxmax(h+ 1))
α
,

we obtain that

E
[
I(Xt ∈ R̂i≥l,t,Fλ0/4

l,t−1,F
λ0/4
i,t−1)X>t (βl−βi) |Xt ∈Rl

]
≤
hmax∑
h=0

21+αCδ1+αx1+α
max(h+ 1)1+α +P

[
Xt ∈ R̂i≥l,t,Fλ0/4

l,t−1,F
λ0/4
i,t−1 |Xt ∈Rl ∩ Ih

]
,

which turns the regret bound in Equation (19) into

rt(π)≤ (K − 1)
[
C21+αδ1+αx1+α

max

( h0∑
h=0

(h+ 1)1+α +

hmax∑
h=h0+1

4d(h+ 1)1+α exp(−h2)
)]

(21)

+ 4(K − 1)bmaxxmax max
i

P(Fλ0
i,t−1),

Now we claim that the above summation has an upper bound that only depends on d and α. If we prove this

claim, the dependency of the regret bound with respect to t can only come from the term δ1+α and therefore

we can prove the desired asymptotic bounds. For proving this claim, consider the summation above and let

h1 = d
√

3 +αe. Recall from the proof of Lemma 6 that for h≥ h0 + 1 we have 4d exp(−h2)≤ 1. Hence, for

each h≥ h2 = max(h0, h1) using h2 ≥ (3 +α)h≥ (3 +α) logh we have

(h+ 1)1+α exp(−h2)≤ (2h)1+α exp(−h2)≤ 21+α exp(−h2 + (1 +α) logh)≤ 21+α

h2
.

Furthermore, all the terms corresponding to h≤ h2 = max(h0, h1) are upper bounded by (h+ 1)1+α. There-

fore, the summation in (21) is bounded above by

h0∑
h=0

(h+ 1)1+α +

hmax∑
h=h0+1

4d(h+ 1)1+α exp(−h2)≤
h2∑
h=0

(h+ 1)1+α +

∞∑
h=h2+1

4d
21+α

h2

≤ (1 +h2)2+α + d
22+απ2

3
= g(d,α)

for some function g. This is true according to the fact that h2 is the maximum of h0, that only depends on

d, and h1 that only depends on α. In above we also used the well-known identity that
∑∞

h=1 1/h2 = π2/6.

Now replacing δ = 1/
√

(t− 1)C3 in the Equation (21) and putting together all the constants we reach to

rt(π)≤ (K − 1)g1(d,α,C,xmax, σ,λ0)(t− 1)−(1+α)/2 + 4(K − 1)bmaxxmax

(
max
i

P[Fλ0
i,t ]
)

for some function g1.



Author: Exploration-Free Contextual Bandits
44 Article submitted to ; manuscript no. (Please, provide the mansucript number!)

The last part of the proof is summing up the instantaneous regret terms for t = 1,2, . . . , T . Note that

K = 2, and using Lemma 4 for i= 1,2, we can bound the probabilities P[Fλ0
i,t−1] by d exp(−C1(t− 1)) and

therefore

RT (π)≤ 2xmaxbmax +

T∑
t=2

g1(d,α,C,xmax, σ,λ0)(t− 1)−(1+α)/2 + 4bmaxxmaxd exp(−C1(t− 1))

≤ 2xmaxbmax +

T−1∑
t=1

g1(d,α,C,xmax, σ,λ0)t−(1+α)/2 + 4bmaxxmaxd exp(−C1t)

≤ 2xmaxbmax + g1(d,α,C,xmax, σ,λ0)

[
1 +

(∫ T

t=1

t−(1+α)/2dt

)]
+ 4dbmaxxmax

∫ ∞
0

exp(−C1t)dt

= 2xmaxbmax + g1(d,α,C,xmax, σ,λ0)

[
1 +

(∫ T

t=1

t−(1+α)/2dt

)]
+

4bmaxxmaxd

C1

.

Now note that the integral of t−(1+α)/2 over the interval [1, T ] satisfies

∫ T

t=1

t−(1+α)/2 ≤


T (1−α)/2

(1−α)/2
if 0≤ α< 1,

logT if α= 1,
1

(α−1)/2
if α> 1,

which yields the desired result. �

D.2. Proof of Proposition 1

Uniqueness of solution of Equation (7). We first prove that the solution to maximum likelihood equation

in Equation (7) is unique whenever the design matrix X>X is positive definite. The first order optimality

condition in Equation (7) implies that

n∑
`=1

X`

(
Y`−A′(X>` β̂)

)
=

n∑
`=1

X`

(
Y`−µ(X>` β̂)

)
= 0 . (22)

Now suppose that there are two solutions to the above equation, namely β̂1 and β̂2. Then, we can write

n∑
`=1

X`

(
µ(X>` β̂1)−µ(X>` β̂2)

)
= 0.

Using the mean-value theorem, for each 1≤ i≤ n we have

µ(X>` β̂2)−µ(X>` β̂1) = µ′(X>` β̃`)
(
X>` (β̂2− β̂1)

)
,

where β̃` belongs to the line connecting β̂1, β̂2. Replacing this in above equation implies that

n∑
`=1

X`

(
µ′(X>` β̃`)

(
X>` (β̂2− β̂1)

))
=

(
n∑
`=1

µ′(X>` β̃`)X`X
>
`

)
(β̂2− β̂1) = 0. (23)

Note that µ is strictly increasing meaning that µ′ is always positive. Therefore, letting m =

min1≤l≤n

{
µ′(X>` β̃`)

}
, we have that

n∑
`=1

µ′(X>` β̃`)X`X
>
` �mXX>.

Therefore, if the design matrix XX> is positive definite, so is
∑n

`=1 µ
′(X>` β̃`)X`X

>
` . Hence, Equation (23)

implies that β̂1 = β̂2.

Proof of Proposition 1. We first state and prove the following lemma:
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Lemma 10. Consider the generalized linear model with the inverse link function µ. Suppose that we have

samples (X1, Y1), (X2, Y2), . . . , (Xn, Yn), where Yi = µ(X>i β0) + εi, where ‖Xi‖2 ≤ xmax and ‖β0‖2 ≤ bmax.

Furthermore, assume that the design matrix X>X =
∑n

i=1XiX
>
i is positive definite. Let β̂ = hµ(X,Y) be

the (unique) solution to the Equation (22) and let θ be an arbitrary positive number. Recall that mθ :=

min{µ′(z) : z ∈ [−(θ+ bmax)xmax, (θ+ bmax)xmax]} and suppose ‖(X>X)−1X>ε‖2 ≤ θmθ, then

‖β̂−β0‖2 ≤
‖(X>X)−1X>ε‖2

mθ

.

The proof of Lemma 10 is adapted from Chen et al. (1999). We use the following lemma from their paper:

Lemma 11 (Chen et al. 1999). Let H be a smooth injection from Rd to Rd with H(x0) = y0. Define

Bδ(x0) = {x∈Rd : ‖x−x0‖ ≤ δ} and Sδ(x0) = ∂Bδ(x0) = {x∈Rd : ‖x−x0‖= δ}. Then, infx∈Sδ(x0) ‖H(x)−
y0‖ ≥ r implies that

(i) Br(y0) = {y ∈Rd : ‖y−y0‖ ≤ r} ⊂H(Bδ(x0)),

(ii) H−1(Br(y0))⊂Bδ(x0)

Proof of Lemma 10. Note that β̂ is the solution to the Equation (22) and therefore
n∑
i=1

(
µ(X>i β̂)−µ(X>i β0)

)
Xi =

n∑
i=1

Xiεi. (24)

Using the mean-value theorem for any β ∈Rd and 1≤ i≤ n we have

µ(X>i β)−µ(X>i β0) = µ′(X>i β
′
i)
(
X>i (β−β0)

)
,

where β′i is a point that lies on the line segment between β and β0. Define

G(β) =

(
n∑
i=1

XiX
>
i

)−1( n∑
i=1

(
µ(X>i β)−µ(X>i β0)

)
Xi

)

=

(
n∑
i=1

XiX
>
i

)−1( n∑
i=1

µ′(X>i β
′
i)
(
X>i (β−β0)

)
Xi

)

=

(
n∑
i=1

XiX
>
i

)−1( n∑
i=1

µ′(X>i β
′
i)XiX

>
i

)
(β−β0)

As µ′(·) > 0, G(β) is an injection from Rd to Rd satisfying G(β0) = 0. Consider the sets Bθ(β0) =

{β ∈Rd : ‖β−β0‖2 ≤ θ} and Sθ(β0) = {β ∈Rd : ‖β−β0‖= θ}. If β ∈ Bθ(β0), for each i, β′i lies on the line

segment between β and β0 and therefore we have |X>i β′i| ≤max (X>i β0,X
>
i β)≤ xmax(bmax + θ) according to

the Cauchy-Schwarz inequality. Then for each β ∈Bθ(β0)

‖G(β)‖22 = ‖G(β)−G(β0)‖22

= (β−β0)>

(
n∑
i=1

µ′(X>i β
′
i)XiX

>
i

)(
n∑
i=1

XiX
>
i

)−2( n∑
i=1

µ′(X>i β
′
i)XiX

>
i

)
(β−β0)

=m2
θ(β−β0)>

(
n∑
i=1

µ′(X>i β
′
i)

mθ

XiX
>
i

)(
n∑
i=1

XiX
>
i

)−2( n∑
i=1

µ′(X>i β
′
i)

mθ

XiX
>
i

)
(β−β0)

≥m2
θ(β−β0)>

(
n∑
i=1

XiX
>
i

)(
n∑
i=1

XiX
>
i

)−2( n∑
i=1

XiX
>
i

)
(β−β0)

=m2
θ‖(β−β0)‖22, (25)
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or in other words ‖G(β)‖2 ≥ ‖β−β0‖2mθ. In particular, for any β ∈ Sθ(β0) we have G(β)≥ θmθ. Therefore,

letting γ = θmθ, Lemma 11 implies that G−1 (Bγ(0))⊂Bθ(β0). Note that if we let z = (X>X)
−1

X>ε, then

by the assumption of lemma z ∈ Bγ(0) and hence there exists β̃,‖β̃ − β0‖ ≤ θ satisfying G−1(z) = β̃, i.e.,

G(β̃) = z. Now we claim that β̃ = β̂. The is not very difficult to prove. In particular, according to Equation

(24) we know that

n∑
i=1

(
µ(X>i β̂)−µ(X>i β0)

)
Xi =

n∑
i=1

Xiεi =⇒G(β̂) =

(
n∑
i=1

XiX
>
i

)−1( n∑
i=1

Xiεi

)
= z.

Since the function G(·) is injective, it implies that β̂ = β̃. As a result, β̂ ∈Bθ(β0) and G(β̂) = z. The desired

inequality follows according to Equation (25). �

Now, we can prove the following corollary to Lemma 5 for generalized linear models.

Corollary 4. Consider rewards given by a generalized linear model with link function µ. Suppose that

the noise terms εit = Yt − µ(X>t βi) are σ-subgaussian for some σ > 0. Let β̂(Si,t) = hµ (X(Si,t),Y(Si,t)) be

the estimated parameter of arm i. Taking C2 = λ2/(2dσ2x2
max) and n≥ |Si,t|, we have for all λ,χ> 0,

P
[
‖β̂(Si,t)−βi‖2 ≥ χ and λmin

(
Σ̂(Si,t)

)
≥ λt

]
≤ 2d exp

(
−C2t

2(χmχ)2/n
)
.

Proof of Corollary 4. Note that if the design matrix Σ̂(Si,t) = X(Si,t)>X(Si,t) is positive definite, then

the event
{
‖β̂(Si,t)−βi‖2 ≥ χ

}
is the subset of the event{
‖Σ̂(Si,t)−1X(Si,t)>ε(Si,t)‖ ≥ χmχ

}
.

To show this, suppose the contrary is true, i.e., we have ‖β̂(Si,t)−βi‖2 ≥ χ while ‖Σ̂(Si,t)−1X(Si,t)>ε(Si,t)‖2 <

χmχ. Then, applying Lemma 11 with θ= χ implies that

‖β̂(Si,t)−βi‖2 ≤
‖Σ̂(Si,t)−1X(Si,t)>ε(Si,t)‖2

mχ

<
χmχ

mχ

= χ ,

which is a contradiction. Therefore,

P
[
‖β̂(Si,t)−βi‖2 ≥ χ and λmin

(
Σ̂(Si,t)

)
≥ λt

]
≤ P

[
‖Σ̂(Si,t)−1X(Si,t)>ε(Si,t)‖2 ≥ χmχ and λmin

(
Σ̂(Si,t)

)
≥ λt

]
≤ 2d exp

(
−C2t

2(χmχ)2/n
)
,

where the last inequality follows from Lemma 5. �

Now, we prove a lemma following the same lines of idea as Lemma 6 but for generalized linear models.

Lemma 12. Recall that Fλi,t = {λmin (X(Si,t)>X(Si,t))≥ λt}. Suppose that Assumptions 1 and 2 hold.

Then, the instantaneous expected regret of the Greedy Bandit for GLMs (Algorithm 2) at time t≥ 2 satisfies

rt(π)≤ 4(K − 1)LµC0C̄µx
2
max

C3

1

t− 1
+ 4(K − 1)bmaxxmax

(
max
i

P[Fλ0/4
i,t−1]

)
,

where C3 = λ2
0/(32dσ2x2

max), C0 is defined in Assumption 2, Lµ is the Lipschitz constant of the function µ(·)

on the interval [−xmaxbmax, xmaxbmax], and C̄µ is defined in Proposition 1.
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Proof of Lemma 12. The proof is very similar to the proof of Lemma 6. We can decompose the regret as

rt(π) = E[Regrett(π)] =
∑K

i=1 E[Regrett(π) |Xt ∈Ri] ·P(Xt ∈Ri). Now we can expand each term as

E[Regrett(π) |Xt ∈Rl] = E
[
µ
(
X>t βl

)
−µ

(
X>t βπt

)
|Xt ∈Rl

]
≤LµE

[
X>t (βl−βπt) |Xt ∈Rl

]
,

as µ is Lµ Lipschitz over the interval [−xmaxbmax, xmaxbmax] and X>t βj ∈ [−xmaxbmax, xmaxbmax] for all j ∈

[K]. Now one can follow all the arguments in Lemma 6 up to the point that we use concentration results for

βj − β̂j . In particular, Equation (18) reads as

P
[
I(Xt ∈ R̂i≥l,t,Fλ0/4

l,t−1,F
λ0/4
i,t−1) |Xt ∈Rl ∩ Ih

]
≤ P

[
‖βl− β̂(Sl,t−1)‖2 ≥ δh,Fλ0/4

l,t−1 |Xt ∈Rl ∩ Ih
]

+P
[
‖β̂(Si,t−1)−βi‖2 ≥ δh,Fλ0/4

i,t−1 |Xt ∈Rl ∩ Ih
]
.

Using the concentration result on Corollary 4, and noting that Xt is independent of β̂(Sj,t−1) for all j, the

right hand side of above equation turns into

P
[
‖βl− β̂(Sl,t−1)‖2 ≥ δh,Fλ0/4

l,t−1

]
+P

[
‖β̂(Si,t−1)−βi‖2 ≥ δh,Fλ0/4

i,t−1

]
≤ 4d exp

(
−C3(t− 1)(δh)2m2

δh

)
= 4d exp(−h2m2

δh).

Now note that δh is at most equal to bmax (since x>(βi − βl) is upper bounded by 2xmaxbmax). As mθ :=

min{µ′(z) : z ∈ [−(bmax + θ)xmax, (bmax + θ)xmax]}, therefore if θ2 > θ1, then mθ2 ≤mθ1 . Hence, for all values

of 0≤ h≤ hmax.

4d exp(−h2m2
δh)≤ 4d exp(−h2m2

bmax
).

We can simply use 1 whenever this number is larger than one as this describes a probability term. Therefore,

E[Regrett(π)]≤
K∑
l=1

LµE
[
X>t (βl−βπt) |Xt ∈Rl

]
·P(Xt ∈Rl)

≤
K∑
l=1

Lµ

(∑
i 6=l

hmax∑
h=0

[
4C0δ

2x2
max(h+ 1)2 min{1,4d exp(−h2m2

bmax
)}
]

+ 4(K − 1)bmaxxmax max
i

P(Fλ0/4
i,t−1)

)
P(Xt ∈Rl)

≤ 4(K − 1)LµC0δ
2x2

max

(
hmax∑
h=0

(h+ 1)2 min{1,4d exp(−h2m2
bmax

)}

)
+ 4(K − 1)bmaxxmax max

i
P(Fλ0/4

i,t−1)

≤ 4(K − 1)Lµ

(
C0δ

2x2
max

(
h0∑
h=0

(h+ 1)2 +

hmax∑
h=h0+1

4d(h+ 1)2 exp(−h2m2
bmax

)

)
+ bmaxxmax max

i
P(Fλ0/4

i,t−1)

)
,

where we take h0 = b
√

log 4d

mbmax
c+ 1. Note that functions f(x) = x2 exp(−m2

bmax
x2) and g(x) = x exp(−m2

bmax
x2)

are both decreasing for x≥ 1/mbmax
and therefore

hmax∑
h=h0+1

(h+1)2 exp(−h2m2
bmax

)≤
∫ ∞
h0

h2 exp(−h2m2
bmax

)dh+

∫ ∞
h0

2h exp(−h2m2
bmax

)dh+

∫ ∞
h0

exp(−h2m2
bmax

)dh.
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Using the change of variable h′ = mbmax
h, integration by parts, and the inequality

∫∞
t

exp(−x2)dx ≤
exp(−t2)/(t+

√
t2 + 4/π), we obtain that

h0∑
h=0

(h+ 1)2 + 4d

hmax∑
h=h0+1

(h+ 1)2 exp(−h2)

=
(h0 + 1)(h0 + 2)(2h0 + 3)

6
+ 4d

(
h0

mbmax

2
+ 1

4

m3
bmax

+
1

m2
bmax

+
1

2mbmax

)
exp(−h2

0m
2
bmax

)

≤ 1

3
h3

0 +
3

2
h2

0 +
13

6
h0 + 1 + 4d

(
h0

mbmax

2
+ 1

4

m3
bmax

+
1

m2
bmax

+
1

2mbmax

)
1

4d

≤ 1

3

(√
log 4d

mbmax

+ 1

)3

+
3

2

(√
log 4d

mbmax

+ 1

)2

+
8

3

(√
log 4d

mbmax

+ 1

)
+

1

m3
bmax

((√
log 4d

mbmax

+ 1

)
mbmax

2
+

1

4

)
+

1

m2
bmax

+
1

2mbmax

= C̄µ

By replacing this in the regret equation above and substituting δ = 1/
√

(t− 1)C3 we get

rt(π) = E[Regrett(π)]≤ 4(K − 1)LµC0C̄µx
2
max

C3

1

t− 1
+ 4(K − 1)Lµbmaxxmax

(
max
i

P[Fλ0/4
i,t−1]

)
as desired. �

The only other result that we need is an upper bound on the probability terms P[Fλ0/4
i,t−1]. We can re-

use Lemma 4 for this purpose, since the greedy decision does not change, i.e., arg maxi∈[K] µ
′(X>t βi) =

arg maxi∈[K]X
>
t βi. Thus, the minimum eigenvalue of each of the covariance matrices is bounded below by

tλ0/4 with high probability as before. We can now finally prove Proposition 1 by summing up the regret

terms up to time T .

Proof of Proposition 1. The regret term at time t = 1 is upper bounded by 2Lµxmaxbmax. Noting that

K = 2, we can apply Lemma 4 and Lemma 12 to write

RT (π) =

T∑
t=1

rt(π)

≤ 2Lµxmaxbmax +

T∑
t=2

Lµ

[
4C0C̄µx

2
max

C3

1

t− 1
+ 4bmaxxmaxd exp(−C1(t− 1))

]

= 2Lµxmaxbmax +
T−1∑
t=1

Lµ

[
4C0C̄µx

2
max

C3

1

t
+ 4bmaxxmaxd exp(−C1t)

]
≤ 2Lµxmaxbmax +Lµ

4C0C̄µx
2
max

C3

(1 +

∫ T

1

1

t
dt) + 4Lµbmaxxmaxd

∫ ∞
1

exp(−C1t)dt

= 2Lµxmaxbmax +Lµ
4C0C̄µx

2
max

C3

(1 + logT ) +Lµ
4bmaxxmaxd

C1

=Lµ

(
128C0C̄µx

4
maxσ

2d

λ2
0

logT +

(
2xmaxbmax +

128C0C̄µx
4
maxσ

2d

λ2
0

+
160bmaxx

3
maxd

λ0

))
=O(logT ) .

�

Appendix E: Additional Details on Greedy-First

We first present the pseudo-code for OLS Bandit and the heuristic for Greedy-First. The OLS Bandit

algorithm was introduced by Goldenshluger and Zeevi (2013) and generalized by Bastani and Bayati (2020).
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Here, we describe the more general version that applies to more than two arms where some arms may be

uniformly sub-optimal. As mentioned earlier, in addition to Assumptions 1 and 2, the regret analysis of the

OLS Bandit requires Assumption 4. The algorithm defines forced-sample sets, which prescribe a set of times

when we forced-sample arm i (regardless of the observed covariates Xt):

Ti ≡
{

(2n− 1) ·Kq+ j
∣∣∣ n∈ {0,1,2, ...} and j ∈ {q(i− 1) + 1, q(i− 1) + 2, ..., iq}

}
. (26)

Thus, the set of forced samples from arm i up to time t is Ti,t ≡Ti ∩ [t] =O(q log t).

We also define all-sample sets Si,t =
{
t′
∣∣ πt′ = i and 1≤ t′ ≤ t

}
, where we have played arm i up to time

t. By definition, Ti,t ⊂ Si,t. The algorithm proceeds as follows. During any forced sampling time t ∈ Ti, the

corresponding arm (arm i) is played regardless of the observed covariates Xt. At all other times, the algorithm

uses two different arm parametere estimates to make decisions. First, it estimates arm parameters via OLS

applied only to the forced sample set, and discards each arm that is sub-optimal by a margin of at least h/2.

Then, it applies OLS to the all-sample set, and picks the arm with the highest estimated reward among the

remaining arms. Algorithm 4 provides the pseudo-code for OLS Bandit.

Algorithm 4 OLS Bandit

Input parameters: q,h
Initialize β̂(Ti,0) and β̂(Si,0) by 0 for all i in [K]
Use q to construct force-sample sets Ti using Eq. (26) for all i in [K]
for t∈ [T ] do

Observe Xt ∈PX
if t∈ Ti for any i then

πt← i
else
K̂=

{
i∈K

∣∣ XT
t β̂(Ti,t−1)≥maxj∈KX

T
t β̂(Tj,t−1)−h/2

}
πt← arg maxi∈K̂X

T
t β̂(Si,t−1)

end if
Sπt,t←Sπt,t−1 ∪{t}
Play arm πt, observe Yi,t =XT

t βπt + εi,t
end for

The pseudo-code for the Heuristic Greedy-First bandit is as follows.

Algorithm 5 Heuristic Greedy-First Bandit

Input parameters: t0
Execute Greedy Bandit for t∈ [t0]

Set λ̂0 = 1
2t0

mini∈[K] λmin

(
Σ̂(Si,t0)

)
if λ̂0 6= 0 then

Execute Greedy-First Bandit for t∈ [t0 + 1, T ] with λ0 = λ̂0

else
Execute OLS Bandit for t∈ [t0 + 1, T ]

end if
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Appendix F: Missing Proofs of §3.5 and §4.3

Proof of Proposition 2. We first start by proving monotonicity results:

• Let σ1 < σ2. Note that only the second, the third, and the last term of L(γ, δ, p), defined in Equation

(9), depend on σ. As for any positive number χ, the function exp(−χ/σ2) is increasing with respect to σ,

second and third terms are increasing with respect to σ. Furthermore, the last term can be expressed as

2d exp (−D2(γ)(p−m|Ksub|))
1− exp(−D2(γ))

= 2d

∞∑
t=p−m|Ksub|

exp

(
−λ

2
1h

2(1− γ)2

8dσ2x4
max

t

)
.

Each term in above sum is increasing with respect to σ. Therefore, the function L is increasing with respect

to σ. As Sgb is one minus the infimum of L taken over the possible parameter space of γ, δ, and p, it is

non-increasing with respect to σ, yielding the desired result.

• Let m1 <m2 and suppose that we use the superscript L(i) for the function L(·, ·, ·) when m=mi, i= 1,2.

We claim that for all γ ∈ (0,1), δ > 0, and p≥Km1 +1, conditioning on L(1)(γ, δ, p)≤ 1 we have L(1)(γ, δ, p)≥

L(2)(γ, δ, p+K(m2 −m1)). Note that the region for which L(1)(γ, δ, p)> 1 does not matter as it leads to a

negative probability of success in the formula Sgb = 1− infγ,δ,pL(γ, δ, p), and we can only restrict our attention

to the region for which L(1)(γ, δ, p)≤ 1. To prove the claim, let θi = P
[
λmin(X>1:mi

X1:mi)≥ δ
]
, i= 1,2 and

define f(θ) = 1− θK +QKθ for the constant Q= 2d exp (−(h2δ)/(8dσ2x2
max)). Note that f(θi) captures the

first two terms of L(i)(γ, δ, p) in Equation (9). As we later going to replace θ= θi we only restrict our attention

to θ≥ 0. The derivative of f is equal to f ′(θ) =−KθK−1 +QK which is negative when θK−1 >Q. Note that

if θK−1 ≤Q and if we drop the third, fourth, and fifth term in L (see Equation (9)) that are all positive,

we obtain L(i)(γ, δ, p)> 1− θK +QKθ > 1− θK +Qθ≥ 1, leaving us in the undesired regime. Therefore, on

the desired regime of study, the derivative is negative and f is decreasing. It is not very difficult to see that

θ1 ≤ θ2. Returning to our original claim, if we calculate L(1)(γ, δ, p)−L(2)(γ, δ, p+K(m2−m1)) it is easy to

observe that the third term cancels out and we end up with

L(1)(γ, δ, p)−L(2)(γ, δ, p+K(m2−m1)) = f(θ1)− f(θ2)

+
exp (−D1(γ)(p−m1|Ksub|))− exp (−D1(γ)(p−m2|Ksub|+K(m2−m1)))

1− exp(−D1(γ))

+
exp (−D2(γ)(p−m1|Ksub|))− exp (−D2(γ)(p−m2|Ksub|+K(m2−m1)))

1− exp(−D2(γ))
≥ 0 ,

where we used the inequality (p−m1|Ksub|) − (p−m2|Ksub|+K(m2−m1)) = |Kopt|(m2 −m1) ≥ 0. This

proves our claim. Note that whenever when p varies in the range [Km1 +1,∞), the quantity p+K(m2−m1)

covers the range [Km2 + 1,∞). Therefore, we can write that

Sgb(m1,K,σ,xmax, λ1, h) = 1− inf
γ∈(0,1),δ,p≥Km1+1

L(1)(γ, δ, p)≤ 1− inf
γ∈(0,1),δ,p≥Km1+1

L(1)(γ, δ, p+K(m2−m1))

= 1− inf
γ∈(0,1),δ,p′≥Km2+1

L(2)(γ, δ, p′) = Sgb(m2,K,σ,xmax, λ1, h),

as desired.

• Let h1 <h2. In this case it is very easy to check that the first, fourth and fifth terms in L (see Equation

(9)) do not depend on h. Dependency of second and third terms are in the form exp(−Qh2) for some constant
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Q, which is decreasing with respect h. Therefore, if we use the superscript L(i) for the function L(·, ·, ·) when

h= hi, i= 1,2, we have that L(1)(γ, δ, p)≥L(2)(γ, δ, p) which implies

Sgb(m,K,σ,xmax, λ1, h1) = 1− inf
γ∈(0,1),δ,p≥Km+1

L(1)(γ, δ, p)≤ 1− inf
γ∈(0,1),δ,p≥Km+1

L(2)(γ, δ, p)

= 1− inf
γ∈(0,1),δ,p′≥Km+1

L(2)(γ, δ, p′) = Sgb(m,K,σ,xmax, λ1, h2),

as desired.

• Similar to the previous part, it is easy to observe that the first, second, and third term in L, defined

in Equation (9) do not depend on λ1. The dependency of last two terms with respect to λ1 is of the form

exp(−Q1λ1) and exp(−Q2λ
2
1) which both are decreasing functions of λ1. The rest of argument is similar to

the previous part and by replicating it with reach to the conclusion that Sgb is non-increasing with respect

to λ1.

• Suppose that K1m1 = K2m2, |K1sub |m1 = |K2sub |m2, and K1 < K2. Similar to before, we use super-

script L(i) to denote the function L(·, ·, ·) when m=mi,K =Ki,Ksub =Kisub . Then it is easy to check that

the last three terms in L(1) and L(2) are the same. Therefore, for comparing Sgb(m1,K1, σ, xmax, λ1) and

Sgb(m2,K2, σ, xmax, λ1), one only needs to compare the first two terms. Letting P
[
λmin(X>1:mi

X1:mi)≥ δ
]

=

θi, i= 1,2 and Q= 2d exp
(
− h2δ

8dσ2x2max

)
we have

L(1)(γ, δ, p)−L(2)(γ, δ, p) = θK2
2 − θ

K1
1 +QK1θ1−QK2θ2.

Similar to the proof of second part, it is not very hard to prove that on the reasonable regime for the

parameters the function g(θ) =−θK1 +QK1θ is decreasing and therefore

L(1)(γ, δ, p)−L(2)(γ, δ, p) = θK2
2 − θ

K1
1 +QK1θ1−QK2θ2 ≤ θK2

2 − θ
K1
2 +QK1θ2−QK2θ2 < 0,

as θ1 ≥ θ2 ∈ [0,1] and K2 >K1. Taking the infimum implies the desired result.

Now we derive the limit of L when σ→ 0. For each σ < (1/Km)2, define γ(σ) = 1/2, δ(σ) =
√
σ, and

p(σ) = d1/
√
σe. Then, by computing the function L for these specific choices of parameters and upper

bounding the summation in Equation (9) with its maximum times the number of terms we get

L(γ(σ), δ(σ), p(σ))≤ 1−
(
P
[
λmin(X>1:mX1:m)≥

√
σ
])K

+ 2KdP
[
λmin(X>1:mX1:m)≥

√
σ
]

exp
(
−Q1/σ

3/2
)

+ 2d/
√
σ exp

(
−Q2/

√
σ
)

+ d
exp (−Q3/

√
σ)

1− exp(−Q3)
+ 2d

exp
(
−Q4/σ

5/2
)

1− exp (−Q4/σ2)
:= J(σ),

for positive constants Q1,Q2,Q3, and Q4 that do not depend on σ. Note that for any σ > 0,

inf
γ∈(0,1),δ>0,p≥Km+1

L(γ, δ, p)≤ J(σ).

Therefore, by taking limit with respect to σ we get

lim
σ↓0

Sgb(m,K,σ,xmax, λ1, h) = 1− lim
σ↓0

L(γ, δ, p)

≥ lim
σ↓0

(1− J(σ)) = 1−
{

1−
(
P
[
λmin(X>1:mX1:m)> 0

])K}
= P

[
λmin(X>1:mX1:m)> 0

]K
,
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proving one side of the result. For achieving the desired result we need to prove that

P [λmin(X>1:mX1:m)> 0]
K ≥ limσ↓0 S

gb(m,K,σ,xmax, λ1, h) which is straightforward. To see this, note that

the function L always satisfies

L(γ, δ, p)≥ 1−
(
P
[
λmin(X>1:mX1:m)≥ δ

])K ≥ 1−
(
P
[
λmin(X>1:mX1:m)> 0

])K
.

As a result, for any σ > 0 we have

Sgb(m,K,σ,xmax, λ1, h)≤ 1−
(
1−P

[
λmin(X>1:mX1:m)> 0

])K
= P

[
λmin(X>1:mX1:m)> 0

]K
.

By taking limits we reach to the desired conclusion. �

Proof of Proposition 3. We omit proofs regarding to the monotonicity results as they are very similar to

those provided in Proposition 2.

For deriving the limit when σ→ 0, define γ(σ) = γ∗, δ(σ) =
√
σ, and p(σ) = t0. Then, by computing the

function L′ for these specific values we have

L′(γ(σ), δ(σ), p(σ))≤ 1−
(
P
[
λmin(X>1:mX1:m)≥

√
σ
])K

+ 2KdP
[
λmin(X>1:mX1:m)≥

√
σ
]

exp
(
−Q′1/σ3/2

)
+ 2dt0 exp

{
−Q

′
2

σ

}
+
Kd exp(−D1(γ∗)t0)

1− exp(−D1(γ∗))
+ 2d

exp (−Q′3t0/σ2)

1− exp (−Q′3/σ2)
:= J ′(σ),

for positive constants Q′1,Q
′
2, and Q′3 that do not depend on σ. Note that for σ > 0,

inf
γ≤γ∗,δ>0,Km+1≤p≤t0

L′(γ, δ, p)≤ J ′(σ).

Therefore, by taking limit with respect to σ we get

lim
σ↓0

Sgf(m,K,σ,xmax, λ1, h) = 1− lim
σ↓0

)L′(γ, δ, p)

≥ lim
σ↓0

(1− J ′(σ))

= 1−
{

1−
(
P
[
λmin(X>1:mX1:m)> 0

])K
+
Kd exp(−D1(γ∗)t0)

1− exp(−D1(γ∗))

}
= P

[
λmin(X>1:mX1:m)> 0

]K − Kd exp(−D1(γ∗)t0)

1− exp(−D1(γ∗))
,

proving one side of the result. For achieving the desired result we need to prove that the other side of this

inequality. Note that the function L′ always satisfies

L′(γ, δ, p)≥ 1−
(
P
[
λmin(X>1:mX1:m)≥ δ

])K
+
Kd exp(−D1(γ)p)

1− exp(−D1(γ))
. (27)

Note that the function D1(γ) is increasing with respect to γ. This is easy to verify as the first derivative of

D1(γ) with respect to γ is equal to

∂D1

∂γ
=

λ1

x2
max

{1− log(1− γ)− 1}=− λ1

x2
max

log(1− γ),

which is increasing for γ ∈ [0,1). Therefore, by using p≤ t0 and γ ≤ γ∗ we have

Kd exp(−D1(γ)p)

1− exp(−D1(γ))
≥ Kd exp(−D1(γ∗)t0)

1− exp(−D1(γ∗))
.

Substituting this in Equation (27) implies that

Sgf(m,K,σ,xmax, λ1, h)≤ 1−
{(

1−P
[
λmin(X>1:mX1:m)> 0

])K
+
Kd exp(−D1(γ∗)t0)

1− exp(−D1(γ∗))

}
= P

[
λmin(X>1:mX1:m)> 0

]K − Kd exp(−D1(γ∗)t0)

1− exp(−D1(γ∗))
.

By taking limits we reach to the desired conclusion. �
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F.1. Proofs of Theorems 2 and 4

Let us first start by introducing two new notations and recalling some others. For each δ > 0 define

Hδi :=
{
λmin

(
X(Si,Km)>X(Si,Km)

)
≥ δ
}

J λi,t =
{
λmin

(
X(Si,t)>X(Si,t)

)
≥ λt−m|Ksub|

}
,

and recall that

Fλi,t =
{
λmin

(
X(Si,t)>X(Si,t)

)
≥ λt

}
Gχi,t =

{
‖β̂(Si,t)−βi‖2 <χ

}
.

Note that whenever |Ksub|= 0, the sets J and F coincide. We first start by proving some lemmas that will

be used later to prove Theorems 2 and 4. The first lemma provides an upper bound on the probability that

the estimate of one of the arms at time t=Km has an error of at least θ1 while the minimum eigenvalue of

covariance matrices at t=Km is at least δ.

Lemma 13. Let i∈ [K] be arbitrary. Then

P
[
Hδi ∩G

θ1
i,Km

]
≤ 2dP

{
λmin

(
X>1:mX1:m

)
≥ δ
}

exp

{
− θ2

1δ

2dσ2

}
Remark 7. Note that Lemma 5 provides an upper bound on the same probability event described above.

However, those results are addressing the case that samples are highly correlated due to greedy decisions. In

the first Km rounds that m rounds of random sampling are executed for each arm, samples are independent

and we can use sharper tail bounds. This would help us to get better probability guarantees for the Greedy

Bandit algorithm.

Proof of Lemma 13. Note that we can write

P
[
Hδi ∩G

θ1
i,Km

]
= P

[
λmin

(
X(Si,Km)>X(Si,Km)

)
≥ δ,‖β̂(SKm,t)−βi‖2 ≥ θ1

]
. (28)

Note that if λmin (X(Si,Km)>X(Si,Km))≥ δ > 0, this means that the covariance matrix is invertible. There-

fore, we can write

β̂(SKm,t)−βi =
[
X(Si,Km)>X(Si,Km)

]−1
X(Si,Km)>Y (Si,Km)−βi

=
[
X(Si,Km)>X(Si,Km)

]−1
X(Si,Km)> [X(Si,Km)βi + ε(Si,Km)]−βi

=
[
X(Si,Km)>X(Si,Km)

]−1
X(Si,Km)>ε(Si,Km) .

To avoid clutter, we drop the term Si,Km in equations. By letting M = [X(Si,Km)>X(Si,Km)]
−1

X(Si,Km) the

probability in Equation (28) turns into

P
[
Hδi ∩G

θ1
i,Km

]
= P

[
λmin

(
X>X

)
≥ δ,‖Mε‖2 ≥ θ1

]
= P

[
λmin

(
X>X

)
≥ δ,

d∑
j=1

|m>j ε| ≥ θ1

]
≤ P

[
λmin

(
X>X

)
≥ δ,∃j ∈ [d], |m>j ε| ≥ θ1/

√
d
]

≤
d∑
j=1

P
[
λmin

(
X>X

)
≥ δ, |m>j ε| ≥ θ1/

√
d
]

=

d∑
j=1

PXPε|X
[
λmin

(
X>X

)
≥ δ, |m>j ε| ≥ θ1/

√
d |X = X0

]
, (29)
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where in the second inequality we used a union bound. Note that in above PX means the probability

distribution over the matrix X, which can also be thought as the multi-dimensional probability distribution

of pX , or alternatively pmX . Now fixing X = X0, the matrix M only depends on X0 and we can use the

well-known Chernoff bound for subgaussian random variables to achieve

P[λmin

(
X>0 X0

)
≥ δ, |m>j ε| ≥ θ1/

√
d |X = X0] = I

[
λmin

(
X>0 X0

)
≥ δ
]
P[|m>j ε| ≥ θ1/

√
d |X = X0]

≤ 2I
[
λmin

(
X>0 X0

)
≥ δ
]

exp

{
− θ2

1

2dσ2‖mj‖22

}
Now note that when λmin (X>0 X0)≥ δ we have

max
j∈[d]
‖mj‖22 = max

(
diag

(
MM>

))
= max

(
diag

(
X>X

−1
))
≤ λmax

(
X>X

−1
)

=
1

λmin (X>X)
≤ 1

δ
,

Hence,

Pε|X
[
λmin

(
X>X

)
≥ δ, |m>j ε| ≥ θ1/

√
d |X = X0

]
≤ 2I

[
λmin

(
X>0 X0

)
≥ δ
]
exp

{
− θ2

1δ

2dσ2

}
.

Putting this back in Equation (29) gives

P
[
Hδi ∩G

θ1
i,Km

]
≤ 2dPX

[(
λmin

(
X>X

))
≥ δ
]

exp

{
− θ2

1δ

2dσ2

}
= 2dP

{
λmin

(
X>1:mX1:m

)
≥ δ
}

exp

{
− θ2

1δ

2dσ2

}
,

as desired. In above we use the fact that PX [λmin (X>X)≥ δ] is equal to P{λmin (X>1:mX1:m)≥ δ} as they

both describe the probability that the minimum eigenvalue of a matrix derived from m random samples from

pX is not smaller than δ. �

Lemma 14. For an arbitrary Km+ 1≤ t≤ p− 1 and i∈ [K] we have

P
[
Hδi ∩G

θ1
i,t

]
≤ 2d exp

{
− θ2

1δ
2

2d(t− (K − 1)m)σ2x2
max

}
Proof of Lemma 14. This is an immediate consequence of Lemma 5. Replace χ = θ1, λ = δ/t and note

that |Si,t| ≤ t− (K − 1)m always holds as (K − 1)m rounds of random sampling for arms other than i exist

in algorithm. �

The next step is proving that if all arm estimates are within the ball of radius θ1 around their true values,

the minimum eigenvalue of arms in Kopt grow linearly, while sub-optimal arms are not picked by Greedy

Bandit algorithm. The proof is a simple generalization of Lemma 4.

Lemma 15. For each t≥ p, i∈Kopt

P
[
J λ1(1−γ)
i,t ∩

(
∩Kl=1 ∩t−1

j=Km G
θ1
l,j

)]
≤ d exp (−D1(γ)(t−m|Ksub|)) .

Furthermore, for each t ≥Km+ 1 and i ∈ Ksub conditioning on the event ∩Kl=1G
θ1
l,t−1, arm i would not be

played at time t under greedy policy.

Proof of Lemma 15. We again use the concentration inequality in Lemma 9. Let i∈Kopt and recall that

Σ̃i,t =

t∑
k=1

E
(
XkX

>
k I
[
Xk ∈ R̂πi,k

]
| H−k−1

)
Σ̂i,t =

t∑
k=1

XkX
>
k I
[
Xk ∈ R̂πi,k

]
,
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denote the expected and sample covariance matrices of arm i at time t respectively. The aim is deriving

an upper bound on the probability that minimum eigenvalue of Σ̂i,t is less than the threshold tλ1(1− γ)−

m|Ksub|. Note that Σ̂i,t consists of two different types of terms: 1) random sampling rounds 1≤ k≤Km and

2) greedy action rounds Km+ 1≤ k≤ t. We analyze these two types separately as following:

• k≤Km. Note that during the first Km periods, each arm receives m random samples from the distri-

bution pX and therefore using concavity of the function λmin(·) we have

λmin

(
Km∑
k=1

E
(
XkX

>
k I
[
Xk ∈ R̂πi,k

])
| H−k−1

)
≥mλminE

(
XX>

)
≥mλmin

 ∑
j∈Kopt

E
(
XX>I

(
X>βj >max

l6=j
X>βl +h

))
≥m|Kopt|λ1,

where X is a random sample from distribution pX .

• k≥Km+ 1. If Gθ1l,j holds for all l ∈ [K], then

E
[
XkX

>
k I
(
Xk ∈ R̂πi,k

)
| H−k−1

]
�E

[
XX>I

(
X>β̂(Si,k)>max

l6=i
X>β̂(Sl,k)

)]
� λ1I .

The reason is very simple; basically having ∩Kl=1G
θ1
l,j means that ‖β̂(Sl,k)−βl‖< θ1 and therefore for each x

satisfying x>βi ≥maxl6=i x
>βl +h, using two Cauchy-Schwarz inequalities we can write

x>β̂(Si,j)−x>β̂(Sl,j)> x>(βi−βl)− 2xmaxθ1 = x>(βi−βl)−h≥ 0,

for each l 6= i. Therefore, by taking a maximum over l we obtain x>β̂(Si,j)−maxi6=l x
>β̂(Sl,j)> 0. Hence,

E
[
XkX

>
k I
(
X>k β̂(Si,k)>max

l 6=i
X>k β̂(Sl,j)

)
| H−k−1

]
�E

[
XX>I

(
X>βi >max

l6=i
X>βl +h

)]
� λ1I,

using Assumption 4, which holds for all optimal arms, i.e, i∈Kopt.

Putting these two results together and using concavity of λmin(·) over positive semi-definite matrices we have

λmin

(
Σ̃i,t

)
= λmin

(
t∑

k=1

E
(
XkX

>
k I
[
Xk ∈ R̂πi,k

]
| H−k−1

))

≥
Km∑
k=1

λmin

(
E
(
XkX

>
k I
[
Xk ∈ R̂πi,k

]
| H−k−1

))
+

t∑
k=Km+1

λmin

(
E
(
XkX

>
k I
[
Xk ∈ R̂πi,k

]
| H−k−1

))
≥m|Kopt|λ1 + (t−Km)λ1 = (t−m|Ksub|)λ1.

Now the rest of the argument is similar to Lemma 4. Note that in the proof of Lemma 4, we simply put

γ = 0.5. Here if we use an arbitrary γ ∈ (0,1) together with XkX
>
k � x2

maxI derived via Cauchy-Schwarz

inequality, then Lemma 9 implies that

P
[
λmin

(
Σ̂i,t

)
≤ (t−m|Ksub|)λ1(1− γ) and λmin

(
Σ̃i,t

)
≥ (t−m|Ksub|)λ1

]
≤ d exp (−D1(γ)(t−m|Ksub|)) .

The second event inside the probability event can be removed, as it always holds under
(
∩Kl=1 ∩t−1

j=Km G
θ1
l,j

)
.

The first event also can be translated to J λ1(1−γ)
i,t and therefore for all i∈Kopt we have

P
[
J λ1(1−γ)
i,t ∩

(
∩Kl=1 ∩t−1

j=Km G
θ1
l,j

)]
≤ d exp (−D1(γ)(t−m|Ksub|)) ,
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as desired.

For a sub-optimal arm i ∈Ksub using Assumption 4, for each x ∈ X there exist l ∈ [K] such that x>βi ≤
x>βl−h and as a result conditioning on ∩Kl=1G

θ1
l,t−1 by using a Cauchy-Schwarz inequality we have

x>β̂(Sl,t−1)−x>β̂(Si,t−1)> x>(βl−βi)− 2xmaxθ1 = x>(βl−βi)−h> 0.

This implies that i 6∈ arg maxl∈[K] x
>β̂(Sl,t−1) and therefore arm i is not played for x at time t (Note that

once Km rounds of random sampling are finished the algorithm executes greedy algorithm). As this result

holds for all choices of x∈X , arm i becomes sub-optimal at time t, as desired. �

Here, we state the final lemma, which bounds the probability that the event Gθ1i,t occurs whenever J λ1(1−γ)
i,t

holds for any t≥ p. In other words, this lemma shows that if the minimum eigenvalue of covariance matrix

of arm i at time t is large, then the estimate of arm i at time t will be close to the true βi, with a high

probability.

Lemma 16. For each t≥ p, i∈ [K]

P
[
Gθ1i,t ∩J

λ1(1−γ)
i,t

]
≤ 2d exp (−D2(γ)(t−m|Ksub|)) .

Proof of Lemma 16. This is again obvious using Lemma 5. �

Now we are ready to prove Theorems 2 and 4. As the proofs of these two theorems are very similar we state

and prove a lemma that implies both theorems.

Lemma 17. Let Assumption and 4 hold. Suppose that Greedy Bandit algorithm with m-rounds of forced

sampling in the beginning is executed. Let γ ∈ (0,1), δ > 0, p≥Km+ 1. Suppose that W is an event which

can be decomposed as W =∩t≥pWt, then event(
∩Ki=1 ∩t≥Km G

θ1
i,t

)
∩W

holds with probability at least

1−
(
P
[
λmin(X>1:mX1:m)≥ δ

])K
+ 2Kd P

[
λmin(X>1:mX1:m)≥ δ

]
exp

{
− h2δ

8dσ2x2
max

}
+

p−1∑
j=Km+1

2d exp

{
− h2δ2

8d(j− (K − 1)m)σ2x4
max

}
+
∑
t≥p

P
[(
∩Ki=1 ∩t−1

k=Km G
θ1
i,k

)
∩
(
Gθ1πt,t ∪Wt

)]
.

In above, λmin(X>1:mX1:m) denotes the minimum eigenvalue of a matrix obtained from m random samples

from the distribution pX and constants are defined in Equations (14) and (15).

Proof of Lemma 17. One important property to note is the following result on the events:{(
∩Ki=1G

θ1
i,t−1

)
∩
(
∪Ki=1G

θ1
i,t

)}
=
{(
∩Ki=1G

θ1
i,t−1

)
∩Gθ1πt,t

}
. (30)

The reason is that the estimates for arms other than arm πt do not change at time t, meaning that for each

i 6= πt,Gθ1i,t−1 = Gθ1i,t. Therefore, the above equality is obvious. This observation comes handy when we want

to avoid using a union bound over different arms for the probability of undesired event. For deriving a lower

bound on the probability of desired event we have

P
[(
∩Ki=1 ∩t≥Km G

θ1
i,t

)
∩W

]
= 1−P

[(
∪Ki=1 ∪t≥Km G

θ1
i,t

)
∪W

]
.
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Therefore, we can write

P
[(
∪Ki=1 ∪t≥Km G

θ1
i,t

)
∪W

]
≤ P

[
∪Ki=1Hδi

]
+P

[(
∩Ki=1Hδi

)
∩
[(
∪Ki=1 ∪t≥Km G

θ1
i,t

)
∪W

]]
.

The first term is equal to 1− (P [λmin(X>1:mX1:m)≥ δ])K . The reason is simple; probability of each Hδi , i ∈

[K] is given by P [λmin(X>1:mX1:m)≥ δ] and these events are all independent due to the random sampling.

Therefore, the probability that at least one of them does not happen is given by the mentioned expression.

In addition, the probability of the second event can be upper bounded by

P
[(
∩Ki=1Hδi

)
∩
[(
∪Ki=1 ∪t≥Km G

θ1
i,t

)
∪W

]]
≤

K∑
l=1

P
[(
∩Ki=1Hδi

)
∩Gθ1l,Km

]
+P

[(
∩Ki=1Hδi

)
∩
(
∩Ki=1G

θ1
i,Km

)
∩
[(
∪Ki=1 ∪t≥Km G

θ1
i,t

)
∪W

]]
≤

K∑
l=1

P
[
Hδl ∩G

θ1
l,Km

]
+P

[(
∩Ki=1Hδi

)
∩
(
∩Ki=1G

θ1
i,Km

)
∩
[(
∪Ki=1 ∪t≥Km G

θ1
i,t

)
∪W

]]
≤ 2KdP

{
λmin

(
X>1:mX1:m

)
≥ δ
}

exp

{
− θ2

1δ

2dσ2

}
+P

[(
∩Ki=1Hδi

)
∩
(
∩Ki=1G

θ1
i,Km

)
∩
[(
∪Ki=1 ∪t≥Km G

θ1
i,t

)
∪W

]]
,

where we used Lemma 13 together with a union bound. For finding an upper bound on the the second

probability, we treat terms t ∈ [Km+ 1, p− 1] and t≥ p differently. Basically, for the first interval we have

guarantees when ∩Ki=1Hδi holds (Lemma 14) and for the second interval the guarantee comes from having

the event ∩Kl=1 ∩t−1
j=Km G

θ1
l,j (Lemma 15). Hence, we can write

P
[(
∩Ki=1Hδi

)
∩
(
∩Ki=1G

θ1
i,Km

)
∩
[(
∪Ki=1 ∪t≥Km G

θ1
i,t

)
∪W

]]
≤

p−1∑
t=Km+1

P
[(
∩Ki=1Hδi

)
∩
(
∩Ki=1 ∩t−1

k=Km G
θ1
i,k

)
∩
(
∪Ki=1G

θ1
i,t

)]
+
∑
t≥p

P
[(
∩Ki=1Hδi

)
∩
(
∩Ki=1 ∩t−1

k=Km G
θ1
i,k

)
∩
(
∪Ki=1G

θ1
i,t ∪Wt

)]
≤

p−1∑
t=Km+1

P
[(
∩Ki=1Hδi

)
∩
(
∩Ki=1G

θ1
i,t−1

)
∩Gθ1πt,t

]
+
∑
t≥p

P
[(
∩Ki=1Hδi

)
∩
(
∩Ki=1 ∩t−1

k=Km G
θ1
i,k

)
∩
(
Gθ1πt,t ∪Wt

)]
≤

p−1∑
t=Km+1

P
[(
∩Ki=1Hδi

)
∩Gθ1πt,t

]
+
∑
t≥p

P
[(
∩Ki=1 ∩t−1

k=Km G
θ1
i,k

)
∩
(
Gθ1πt,t ∪Wt

)]
.

using Equation (30) and carefully dividing the event
[(
∪Ki=1 ∪t≥Km G

θ1
i,t

)
∪W

]
into some smaller events. Note

that by using the second part of Lemma 15, if the event ∩Ki=1G
θ1
i,t−1 holds, then π is equal to one of the

elements in Kopt and sub-optimal arms in Ksub will not be pulled. Therefore, the first term is upper bounded

by

p−1∑
t=Km+1

∑
l∈Kopt

P [πt = l]P
[(
∩Ki=1Hδi

)
∩Gθ1l,t

]
≤

p−1∑
t=Km+1

∑
l∈Kopt

P [πt = l] 2d exp

{
− θ2

1δ
2

2d(t− (K − 1)m)σ2x2
max

}

≤
p−1∑

t=Km+1

2d exp

{
− θ2

1δ
2

2d(t− (K − 1)m)σ2x2
max

}
,

using uniform upper bound provided in Lemma 14 and
∑

l∈Kopt P [πt = l] = 1. This concludes the proof. �
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Proof of Theorem 2 The proof consists of using Lemma 17. Basically, if we know that the events Gθ1i,t
for i ∈ [K] and t ≥Km all hold, we have derived a lower bound on the probability that greedy succeeds.

The reason is pretty simple here, if the distance of true parameters βi and β̂i is at most θ1 for each t, we

can easily ensure that the minimum eigenvalue of covariance matrices of optimal arms are growing linearly,

and sub-optimal arms remain sub-optimal for all t≥Km+ 1 using Lemma 15. Therefore, we can prove the

optimality of Greedy Bandit algorithm and also establish its logarithmic regret. Therefore, in this case we

need not use anyW in Lemma 17, we simply putWt =W = Ω, where Ω is the whole probability space. Then

we have

P
[
∩Ki=1 ∩t≥Km G

θ1
i,t

]
≥ 1−

(
P
[
λmin(X>1:mX1:m)≥ δ

])K
+ 2Kd P

[
λmin(X>1:mX1:m)≥ δ

]
exp

{
− h2δ

8dσ2x2
max

}
+

p−1∑
j=Km+1

2d exp

{
− h2δ2

8d(j− (K − 1)m)σ2x4
max

}
+
∑
t≥p

P
[(
∩Ki=1 ∩t−1

k=Km G
θ1
i,k

)
∩Gθ1πt,t

]
.

The upper bound on the last term can be derived as following∑
t≥p

P
[(
∩Ki=1 ∩t−1

k=Km G
θ1
i,k

)
∩
(
∪Ki=1G

θ1
πt,t

)]
=
∑
t≥p

∑
l∈Kopt

P[πt = l]P
[(
∩Ki=1 ∩t−1

k=Km G
θ1
i,k

)
∩
(
∪Ki=1G

θ1
l,t

)]
≤
∑
t≥p

∑
l∈Kopt

P[πt = l]
{
P
[
J λ1(1−γ)
l,t ∩

(
∩Ki=1 ∩t−1

j=Km G
θ1
i,j

)]
+P

[
Gθ1l,t ∩J

λ1(1−γ)
l,t

]}
,

which by using Lemmas 15 and 16 can be upper bounded by∑
t≥p

∑
l∈Kopt

P[πt = l]{d exp (−D1(γ)(t−m|Ksub|)) + 2d exp (−D2(γ)(t−m|Ksub|))}

=
∑
t≥p

exp (−D1(γ)(t−m|Ksub|)) +
∑
t≥p

2d exp (−D2(γ)(t−m|Ksub|))

=
d exp (−D1(γ)(p−m|Ksub|))

1− exp(−D1(γ))
+

2d exp (−D2(γ)(p− |Ksub|))
1− exp(−D2(γ))

.

Summing up all these term yields the desired upper bound. Now note that this upper bound is algorithm-

independent and holds for all values of γ ∈ (0,1), δ≥ 0, and p≥Km and therefore we can take the supremum

over these values for our desired event (or infimum over undesired event). This concludes the proof. �

For proving Theorem 4 the steps are very similar, the only difference is that the desired event happens

if all events Gθ1i,t, i ∈ [K], t ≥Km hold, and in addition to that, events Fλi,t, i ∈ [K], t ≥ t0 all need to hold

for some λ > λ0/4. Recall that in Theorem 4, Ksub = ∅ and therefore we can use the notations J and F
interchangeably. For Greedy-First, we define W =∩i∈[K] ∩t≥pFλi,t for some λ. This basically, means we need

to take Wt =∩i∈[K]Fλi,t for some λ.

Proof of Theorem 4 The proof is very similar to proof of Theorem 2. For arbitrary γ, δ, p we want to

derive a bound on the probability of the event

P
[(
∩Ki=1 ∩t≥Km G

θ1
i,t

)
∩
(
∩Ki=1 ∩t≥p F

λ1(1−γ)
i,t

)]
.

Note that if p≤ t0 and γ ≤ 1− λ0/(4λ1), then having events Fλ1(1−γ)
i,t , i ∈ [K], t≥ p implies that the events

Fλ0/4
i,t , i ∈ [K], t ≥ t0 all hold. In other words, Greedy-First does not switch to the exploratory algorithm
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and is able to achieve logarithmic regret. Let us substitute Wt = ∩Ki=1F
λ1(1−γ)
i,t which implies that W =

∩Ki=1 ∩t≥p F
λ1(1−γ)
i,t . Lemma 17 can be used to establish a lower bound on the probability of this event as

P
[(
∩Ki=1 ∩t≥Km G

θ1
i,t

)
∩
(
∩Ki=1 ∩t≥p F

λ1(1−γ)
i,t

)]
≥ 1−

(
P
[
λmin(X>1:mX1:m)≥ δ

])K
+ 2Kd P

[
λmin(X>1:mX1:m)≥ δ

]
exp

{
− h2δ

8dσ2x2
max

}
+

p−1∑
j=Km+1

2d exp

{
− h2δ2

8d(j− (K − 1)m)σ2x4
max

}
+
∑
t≥p

P
[(
∩Ki=1 ∩t−1

k=Km G
θ1
i,k

)
∩
(
Gθ1πt,t ∪

(
∩Ki=1F

λ1(1−γ)
i,t

))]
.

Hence, we only need to derive an upper bound on the last term. By expanding this based on the value of πt

we have ∑
t≥p

P
[(
∩Ki=1 ∩t−1

k=Km G
θ1
i,k

)
∩
(
Gθ1πt,t ∪

(
∩Ki=1F

λ1(1−γ)
i,t

))]
=
∑
t≥p

K∑
l=1

P[πt = l]P
[(
∩Ki=1 ∩t−1

k=Km G
θ1
i,k

)
∩
(
Gθ1l,t ∪

(
∪Ki=1F

λ1(1−γ)
i,t

))]
≤
∑
t≥p

K∑
l=1

P[πt = l]

{
K∑
w=1

(
P
[(
∩Ki=1 ∩t−1

j=Km G
θ1
i,j

)
∩Fλ1(1−γ)

w,t

])
+P

[
Gθ1l,t ∩F

λ1(1−γ)
l,t

]}
,

using a union bound and the fact that the space Fλ1(1−γ)
l,t has already been included in the first term, so its

complement can be included in the second term. Now, using Lemmas 15 and 16 this can be upper bounded

by∑
t≥p

∑
l∈Kopt

P[πt = l]{Kd exp(−D1(γ)t) + 2d exp(−D2(γ)t)}=
∑
t≥p

Kd exp(−D1(γ)t) +
∑
t≥p

2d exp(−D2(γ)t)

=
Kd exp(−D1(γ)p)

1− exp(−D1(γ))
+

2d exp(−D2(γ)p)

1− exp(−D2(γ))
.

As mentioned earlier, we can take supremum on parameters p, γ, δ as long as they satisfy p ≤ t0, γ ≤ 1−

λ0/(4λ1), and δ > 0. They would lead to the same result only with the difference that the infimum over L

should be replaced by L′ and these two functions satisfy

L′(γ, δ, p) =L(γ, δ, p) + (K − 1)
d exp(−D1(γ)p)

1− exp(−D1(γ))
,

which yields the desired result. �

Proof of Corollary 2. We want to use the result of Theorem 2. In this theorem, let us substitute γ =

0.5, p=Km+ 1, and δ = 0.5λ1m|Kopt|. After this substitution, Theorem 2 implies that the Greedy Bandit

algorithm succeeds with probability at least

P
[
λmin(X>1:mX1:m)≥ 0.5λ1m|Kopt|

]K − 2Kd P
[
λmin(X>1:mX1:m)≥ 0.5λ1m|Kopt|

]
exp

{
−0.5h2λ1m|Kopt|

8dσ2x2
max

}
− d exp{−D1(0.5)(Km+ 1−m|Ksub|)}

1− exp{−D1(0.5)}

− 2d exp{−D2(0.5)(Km+ 1−m|Ksub|)}
1− exp{−D2(0.5)}

.
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For deriving a lower bound on the first term let us use the concentration inequality in Lemma 9. Note that

here the samples are drawn i.i.d. from the same distribution pX . Therefore, by applying this Lemma we have

P
[
λmin(X>1:mX1:m)≤ 0.5λ1m|Kopt|) and E[λmin(X>1:mX1:m)]≥ λ1m|Kopt|

]
≤ d

(
e−0.5

0.50.5

)λ1m|Kopt|/x2max

= d exp

{
−λ1m|Kopt|

x2
max

(−0.5− 0.5 log(0.5))

}
≥ d exp

(
−0.153

λ1m|Kopt|
x2

max

)
.

Note that the second event, i.e. E[λmin(X>1:mX1:m)]≥ λ1m|Kopt| happens with probability one. This is true

according to

E[λmin(X>1:mX1:m)] = E[λmin(

m∑
l=1

XlX
>
l )]≥E[

m∑
l=1

λmin(XlX
>
l )] =

m∑
l=1

E[λmin(XlX
>
l )] =mE[λmin(XX>)],

where X ∼ pX and the inequality is true according to the Jensen’s inequality for the concave function λmin(·).
Now note that, this expectation can be bounded by

E[λmin(XX>)]≥E

[
λmin

(
K∑
i=1

XX>I(X>βi ≥max
j 6=i

X>βj +h)

)]

≥
K∑
i=1

E
[
λmin

(
XX>I(X>βi ≥max

j 6=i
X>βj +h)

)]
≥ |Kopt|λ1,

according to Assumption 4 and another use of Jensen’s inequality for the function λmin(·). Note that this

part of proof was very similar to Lemma 15. Thus, with a slight modification we get

P
[
λmin(X>1:mX1:m)≥ 0.5λ1m|Kopt|

]
≥ 1− d exp

(
−0.153

λ1m|Kopt|
x2

max

)
.

After using this inequality together with the inequality (1− x)K ≥ 1−Kx, and after replacing values of

D1(0.5) and D2(0.5), the lower bound on the probability of success of Greedy Bandit reduces to

1−Kd exp

(
−0.153λ1m|Kopt|

x2
max

)
− 2Kd exp

(
−h

2λ1m|Kopt|
16dσ2x2

max

)
− d

∞∑
l=(K−|Ksub|)m+1

exp

(
−0.153λ1

x2
max

l

)
− 2d

∞∑
l=(K−|Ksub|)m+1

exp

(
− λ2

1h
2

32dσ2x4
max

l

)
.

In above we used the expansion 1/(1− x) =
∑∞

l=0 x
l. In order to finish the proof note that by a Cauchy-

Schwarz inequality λ1 ≤ x2
max. Furthermore, K − |Ksub| = |Kopt| and therefore the above bound is greater

than or equal to

1−Kd
∞∑

l=m|Kopt|

exp

(
−0.153λ1

x2
max

l

)
− 2Kd

∞∑
l=m|Kopt|

exp

(
− λ2

1h
2

32dσ2x4
max

l

)
≥ 1− 3Kd exp(−Dminm|Kopt|)

1− exp(−Dmin)
,

as desired. �

Proof of Corollary 3. Proof of this corollary is very similar to the previous corollary. Extra conditions of

the corollary ensure that both γ = 0.5, p=Km+ 1 lie on their accepted region. For avoiding clutter, we skip

the proof. �

Appendix G: Additional Simulations

We now explore the performance of Greedy Bandit as a function of K and d, as well as the dependence

of the performance of Greedy-First on the input parameters t0 (which determines when to switch) and h, q

(which are inputs to OLS Bandit after switching). Note that Greedy Bandit is entirely parameter-free.
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(a) Regret for t= 1, . . . ,10000.
(b) Distribution of regret at T = 10000.

Figure 5 These figures show a sharp change in the performance of Greedy Bandit for K = 5 arms as d increases.

G.1. More than Two Arms (K > 2)

We simulate the Greedy Bandit with K = 5 arms, and vary the dimension d= 2,3, . . . ,10. Here, we fix the

context distribution to 0.5×N(0d, Id) truncated at 1, and we draw arm parameters {βi} from N(0d, Id). To

ensure a fair comparison, we scale the noise variance by d so as to keep the signal-to-noise ratio fixed (i.e.,

σ = 0.25
√
d). The results are shown in Figure 5. We find that the performance of Greedy Bandit improves

dramatically as the dimension d increases, while it degrades with the number of arms K (as predicted by

Proposition 2). When d is small relative to K, it is likely that Greedy Bandit will drop an arm due to an

early poor arm parameter estimate, which then results in linear regret. However, when d is large relative to

K, Greedy Bandit performs very well. We conjecture that this turning point occurs when d≥K − 1.

We also repeat the simulations detailed in §5.1 with the only modification that K = 5, d∈ {3,7}; we employ

the true prior for OFUL and TS. In Figure 6, we plot the resulting cumulative regret for all algorithms

averaged over 1000 runs. We observe that Greedy-First nearly ties with Greedy Bandit as the winner when

d= 7. However for d= 3, Greedy Bandit performs poorly, while Greedy-First performs nearly as well as the

best algorithms. Thus, we again see empirical evidence that higher dimension benefits a greedy approach.

G.2. Sensitivity to parameters

We now perform a sensitivity analysis to see how the input parameters h, q, and t0 affect the performance of

Greedy-First. Note that Greedy Bandit is entirely parameter-free. The sensitivity analysis is performed with

the same problem parameters as in Figure 2 for the case that covariate diversity does not hold. As can be

observed from Figure 7, we find that the performance of Greedy-First is quite robust to the choice of inputs.
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(a) K = 5, d= 3 (b) K = 5, d= 7

Figure 6 Simulations for K > 2 arms.

(a) Sensitivity with respect to h. (b) Sensitivity with respect to q. (c) Sensitivity with respect to t0.

Figure 7 Sensitivity analysis for the expected regret of Greedy-First algorithm with respect to the input param-

eters h, q, and t0.
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