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Abstract: Existing approaches to algorithmic fairness aim to ensure equitable outcomes if human

decision-makers comply perfectly with algorithmic decisions. However, perfect compliance with the

algorithm is rarely a reality or even a desirable outcome in human-AI collaboration. Yet, recent stud-

ies have shown that selective compliance with fair algorithms can amplify discrimination relative

to the prior human policy. As a consequence, ensuring equitable outcomes requires fundamentally

different algorithmic design principles that ensure robustness to the decision-maker’s (a priori

unknown) compliance pattern. We define the notion of compliance-robustly fair algorithmic recom-

mendations that are guaranteed to (weakly) improve fairness in decisions, regardless of the human’s

compliance pattern. We propose a simple optimization strategy to identify the best performance-

improving compliance-robustly fair policy. However, we show that it may be infeasible to design

algorithmic recommendations that are simultaneously fair in isolation, compliance-robustly fair,

and more accurate than the human policy; thus, if our goal is to improve the equity and accuracy

of human-AI collaboration, it may not be desirable to enforce traditional algorithmic fairness

constraints. We illustrate the value of our approach on criminal sentencing data before and after

the introduction of an algorithmic risk assessment tool in Virginia.

Significance Statement: Decision-makers attempt to enforce fair outcomes from human-

AI collaboration by imposing constraints on the algorithm’s decisions alone – this implicitly

assumes that people follow AI recommendations perfectly, but in reality, people selectively

choose when to comply. This selective compliance can unintentionally worsen inequities,

even when the AI itself is designed to be fair. Our research introduces a new user-aware
approach to fairness, focusing on algorithms that improve equity regardless of how much

people follow their advice. We show how to design such “compliance-robust” algorithms

while still improving performance. However, we find that achieving traditional algorithmic

fairness, compliance-robustness, and improved performance simultaneously may not

always be possible. This work highlights the need to rethink algorithmic fairness standards

for AI systems when their goal is to support human decision-making.
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1 INTRODUCTION
As machine learning algorithms are increasingly deployed in high-stakes settings (e.g.,

healthcare, finance, justice), it has become imperative to understand the fairness implica-

tions of algorithmic decision-making on protected groups. As a consequence, a wealth

of work has sought to define algorithmic fairness [Chen et al., 2023, Corbett-Davies and

Goel, 2018, Dwork et al., 2012, Hardt et al., 2016, Kleinberg et al., 2016] and learn machine

learning-based policies that satisfy fairness constraints to ensure equitable outcomes across

protected groups [Bastani et al., 2022, Basu, 2023, Joseph et al., 2016, Kearns et al., 2019,

Kim et al., 2019].

Most of this work focuses on whether the algorithm makes fair decisions in isolation. Yet,
these algorithms are rarely used in high-stakes settings without human oversight, since

there are still considerable legal and regulatory challenges to full automation. Moreover,

many believe that human-AI collaboration is superior to full automation because human

experts may have auxiliary information that can help correct the mistakes of algorithms,

producing better decisions than the human or algorithm alone. For example, while many

powerful AI systems have been developed for diagnosing medical images [Esteva et al.,

2017], the Center for Medicare and Medicaid Services only allows AI systems to assist
medical experts with diagnosis [Rajpurkar et al., 2022].

However, human-AI collaboration introduces new complexities — the overall outcomes

now depend not only on the algorithmic recommendations, but also on the subset of individ-

uals for whom the human decision-maker complies with the algorithmic recommendation.

Recent case studies have shown mixed results on whether human-AI collaboration actually

improves decision accuracy [Ahn et al., 2024, Campero et al., 2022] or fairness [Van Dam,

2019]. For instance, a recent experiment examines diagnostic quality when radiologists

are assisted by AI models [Agarwal et al., 2023]. The authors find that, although the AI

models are substantially more accurate than radiologists, access to AI assistance does

not improve diagnostic quality on average; the authors show that this is due to selective
compliance of the algorithmic recommendations by humans, which they hypothesize is

driven by improper Bayesian updating. Similarly, a recent study evaluates the impact of

algorithmic risk assessment on judges’ sentencing decisions in Virginia courts [Stevenson

and Doleac, 2024, Van Dam, 2019]. Although risk assessment promised fairer outcomes

[Kleinberg et al., 2018], the authors find that it brought no detectable benefits in terms

of public safety or reduced incarceration; in fact, racial disparities increased in the subset

of courts where risk assessment appears most influential. Once again, the mismatch is

driven by selective compliance to algorithmic recommendations, which appears to be

at least partly driven by conflicting objectives between judges and the algorithm (e.g.,

judges are more lenient towards younger defendants). Selective compliance has significant

fairness implications, e.g., in this case, the authors note that “judges were more likely to

sentence leniently for white defendants with high-risk scores than for black defendants

with the same score.” These case studies make it clear that ensuring equitable outcomes

in human-AI collaboration requires accounting for humans’ complex and unexpected

compliance patterns. To this end, Gillis et al. [2021], Morgan and Pass [2019] show that
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the outcomes of human-AI collaboration can be arbitrarily less fair than either those of

the human alone or the algorithm alone.

To resolve this state of affairs, we introduce the notion of compliance-robust algorithms —

i.e., algorithmic decision policies that are guaranteed to (weakly) improve fairness in final

outcomes, regardless of the human’s (unknown) compliance pattern. In particular, given a

human decision-maker and her policy (without access to AI assistance), we characterize the

class of algorithmic recommendations that never result in collaborative final outcomes that

are less fair than the pre-existing human policy, even if the decision-maker’s compliance

pattern is adversarial. Next, we prove that there exists considerable tension between

traditional algorithmic fairness and compliance-robust fairness. Unless the true data-

generating process is itself perfectly fair, it can be infeasible to design an algorithmic

policy that is fair in isolation, compliance-robustly fair, and more accurate than the human-

only policy, implying that compliance-robust fairness imposes fundamentally different

constraints compared to traditional fairness. This raises the question of whether traditional

fairness is even a desirable constraint to enforce for human-AI collaboration—if the goal is to

improve fairness and accuracy in human-AI collaboration outcomes, it may be preferable

to design an algorithmic policy that is accurate and compliance-robustly fair, but not

necessarily fair in isolation.

Lastly, we use Virginia court sentencing data—leveraging variation from the introduction

of an algorithmic risk assessment tool in 2002—to simulate the performance and fairness

of compliance-robust policies versus natural baseline policies. We find that a compliance-

robust policy performs favorably, both in terms of performance and fairness, across all 193

judges who exhibit very different compliance behaviors.

2 PROBLEM FORMULATION
We now introduce some notation to formalize the human-AI decision-making problem,

and definitions of traditional fairness, compliance-robust fairness, and performance.

Consider a decision-making problem where each individual is associated with a type

𝑥 ∈ X = [𝑘] = {1, ..., 𝑘} (e.g., education, prior defaults), a protected attribute 𝑎 ∈ A = {0, 1}
(e.g., gender), and a true outcome 𝑦 ∈ Y = {0, 1} (e.g., whether they can repay a loan).

1
Let

P(𝑥, 𝑎,𝑦) overX×A×Y denote the joint distribution of the types, protected attributes, and

outcomes of individuals for whom decisions must be made (we will not require knowledge

of P(𝑥, 𝑎,𝑦) to construct policies). We make the following assumption that our population

has good “coverage” across variables/outcomes:

Assumption 1. We have P(𝑥, 𝑎,𝑦) > 0 for all 𝑥 ∈ X, 𝑎 ∈ A, and 𝑦 ∈ Y.

1
Note X can encompass multiple categorical features that are “flattened” into a single dimension. For math-

ematical simplicity, we restrict to categorical features (i.e., X has finite possible values), a binary protected

attribute, and a binary outcome. Our results straightforwardly extend to protected attributes with multiple

classes, but allowing for continuous features and outcomes requires modifying the primary fairness definition

we use [Hardt et al., 2016] by introducing slack variables.
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Definition 2.1. A decision-making policy is a mapping 𝜋 : X×A → [0, 1] that maps each

feature-attribute pair to a probability 𝜋 (𝑥, 𝑎); then, the decision is 𝑦 ∼ Bernoulli(𝜋 (𝑥, 𝑎)).2

The algorithm designer’s goal is for the decision to equal the true outcome — i.e., 𝑦 = 𝑦

(e.g., wewould ideally give each individual a loan if and only if theywill repay the loan).
3
We

consider a human decision-maker represented by a policy 𝜋𝐻 (without access to algorithmic

assistance). When given access to recommendations from an algorithmic policy 𝜋𝐴, the

human instead makes decisions according to a compliance function 𝑐 : X × A ↦→ {0, 1},
where 𝑐 (𝑥, 𝑎) = 1 indicates that the human adopts the algorithmic decision for individuals

(𝑥, 𝑎). Then, the joint human-AI policy will be

𝜋𝐶 (𝑥, 𝑎) =
{
𝜋𝐴 (𝑥, 𝑎) if 𝑐 (𝑥, 𝑎) = 1

𝜋𝐻 (𝑥, 𝑎) otherwise.

Note that 𝜋𝐻 can be estimated via supervised learning on historical decision-making data

in the absence of algorithmic recommendations; in contrast, the compliance function

𝑐 cannot be learned until an algorithm 𝜋𝐴 has already been deployed, potentially with

poor consequences. Thus, we assume knowledge of 𝜋𝐻 , but study compliance-robust

policies that do not require any knowledge of 𝑐 . We will show that our results extend

starightforwardly to more complex compliance functions that are random or depend on

the algorithmic recommendation itself (e.g., a human is more likely to comply when the

algorithmic recommendation 𝜋𝐴 (𝑥, 𝑎) is similar to their own judgment 𝜋𝐻 (𝑥, 𝑎)).

Fairness. We primarily analyze the well-studied notion of “equality of opportunity”

[Hardt et al., 2016, Kleinberg et al., 2016], which requires that, for any chosen decision

policy 𝜋 , the true positive rates for each protected group should be equal:

P[𝑦 = 1 | 𝑦 = 1, 𝑎 = 0] = P[𝑦 = 1 | 𝑦 = 1, 𝑎 = 1] .
In other words, on average, deserving individuals (𝑦 = 1) should have the same likelihood of

access to the intervention (𝑦 = 1) regardless of their protected group status (𝑎 ∈ {0, 1}). In
Appendix A.4, we show that the qualitative challenges that we illustrate in this paper arise

for a very general class of fairness definitions, subsuming demographic parity [Calders

et al., 2009, Zliobaite, 2015] and equalized odds [Chen et al., 2023, Hardt et al., 2016].

For a policy 𝜋 , we then marginalize out the types 𝑥 to obtain the average score for

subgroup 𝑎 as

𝜋 (𝑎) =
∑︁
𝑥∈X

𝜋 (𝑥, 𝑎)P(𝑥 | 𝑎,𝑦 = 1) .

Traditional algorithmic fairness would require the algorithmic policy 𝜋𝐴 to satisfy 𝜋𝐴 (0) =
𝜋𝐴 (1), without accounting for the human policy 𝜋𝐻 or the compliance function 𝑐 .

Next, without loss of generality, we assume Group 1 is better off than Group 0 in terms

of “opportunity” under the human-alone policy:

2
We use the commonly employed Bernoulli distribution, but it suffices for P[𝑦 = 1] to simply be increasing in

𝜋 (𝑥, 𝑎).
3
Note that the human’s objective may vary, e.g., judges are more lenient towards younger defendants [Van Dam,

2019], but algorithm designers are typically restricted to predicting outcomes observed in the training data.
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Assumption 2. We have 𝜋𝐻 (1) ≥ 𝜋𝐻 (0).

We now introduce some definitions. Let 𝛼 be the slack in group fairness for a policy 𝜋 :

𝛼 (𝜋) = |𝜋 (1) − 𝜋 (0) |.

Definition 2.2. We say an algorithmic policy 𝜋𝐴 reduces fairness under compliance func-

tion 𝑐 if the resulting human-AI policy 𝜋𝐶 satisfies 𝛼 (𝜋𝐶 ) > 𝛼 (𝜋𝐻 ).

Note that a human decision-maker can always choose to ignore all algorithmic advice

(i.e., 𝑐 (𝑥, 𝑎) = 0 for all 𝑥 and 𝑎) resulting in the human’s policy (𝜋𝐶 = 𝜋𝐻 )—then, if 𝜋𝐻 is

unfair, no choice of 𝜋𝐴 can guarantee a fair 𝜋𝐶 . Thus, when designing 𝜋𝐴, we can at most

demand that we do not reduce unfairness relative to the existing human policy 𝜋𝐻 .

Definition 2.3. Given 𝜋𝐻 , an algorithmic policy 𝜋𝐴 is compliance-robustly fair if there
does not exist any compliance function 𝑐 that reduces fairness for 𝜋𝐴.

Let Πfair be the set of compliance-robustly fair policies; note that these policies need not

be fair in the traditional algorithmic fairness sense. We will characterize Πfair in the next

section.

Performance. Algorithmic assistance often aims to not only improve fairness but also

the accuracy of decisions. Ideally, we would produce compliance-robustly fair recommen-

dations that improve performance relative to the human policy. To define performance,

we consider a loss function ℓ : [0, 1] × Y → R, and define the expected loss

𝐿(𝜋) = E[ℓ (𝜋 (𝑥, 𝑎), 𝑦)] .
Let the performance-maximizing (but possibly unfair) optimal policy be

𝜋∗ = argmin

𝜋

𝐿(𝜋),

and the highest performing compliance-robustly fair policy be

𝜋0 = arg min

𝜋∈Πfair

𝐿(𝜋) .

For analysis, we impose the following mild assumption on our loss:

Definition 2.4. We say a policy 𝜋 ′
has higher deviation than a second policy 𝜋 if for all

𝑥 ∈ X, 𝑎 ∈ A, if 𝜋 (𝑥, 𝑎) ≥ 𝜋∗(𝑥, 𝑎), then 𝜋 ′(𝑥, 𝑎) ≥ 𝜋 (𝑥, 𝑎), and if 𝜋 (𝑥, 𝑎) ≤ 𝜋∗(𝑥, 𝑎), then
𝜋 ′(𝑥, 𝑎) ≤ 𝜋 (𝑥, 𝑎). We say the deviation is strictly higher if the inequality is strict for any

𝑥 ∈ X, 𝑎 ∈ A.

Assumption 3. For any policies 𝜋, 𝜋 ′, if 𝜋 ′ has higher deviation than 𝜋 , then 𝐿(𝜋 ′) ≥ 𝐿(𝜋);
furthermore, if the deviation is strictly higher, then 𝐿(𝜋 ′) > 𝐿(𝜋).

In other words, if 𝜋 ′
always deviates farther from 𝜋∗ than 𝜋 (i.e., for every 𝑥 and 𝑎),

then 𝜋 ′
has higher expected loss. It can be easily checked that common loss functions

(e.g., mean squared error, mean absolute error, cross entropy) satisfy the above definition.

It is worth noting that we do not assume the loss is symmetric — i.e., if 𝜋 and 𝜋 ′
are on

different sides of 𝜋∗ for any 𝑥, 𝑎 pair, this assumption does not say anything about which

one attains a lower loss.
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𝑎

𝑎 = 0 𝑎 = 1

𝜋 (𝑎)

𝜋𝐻

𝜋𝐴

𝛼 (𝜋𝐻 )

(a) Fairness reduced if 𝑐 (𝑥, 0) = 0 and 𝑐 (𝑥, 1) = 1

𝑎

𝑎 = 0 𝑎 = 1

𝜋 (𝑎)

𝜋𝐻
𝜋𝐴

𝛼 (𝜋𝐻 )

(b) Compliance-robust fairness

Fig. 1. Examples with trivial individual types (i.e., X = {1}) with the same human policy 𝜋𝐻
and two different algorithmic policies 𝜋𝐴. The human policy is unfair (𝜋𝐻 (0) ≠ 𝜋𝐻 (1)), but the
algorithmic policy in both cases is fair in isolation (𝜋𝐴 (0) = 𝜋𝐴 (1)). Left: If the human selectively
complies when 𝑎 = 1, fairness is reduced (relative to 𝜋𝐻 ). Right: Fairness is never reduced for any
compliance 𝑐 , i.e., 𝜋𝐴 is compliance-robustly fair.

3 CHARACTERIZATION OF COMPLIANCE-ROBUST FAIRNESS
Our first main result characterizes the class of compliance-robust policiesΠfair. For intuition,

consider the simple example depicted in Figure 1, where there are no types (i.e., X = {1}).
The left and right panels consider the same unfair human policy 𝜋𝐻 (i.e., 𝜋𝐻 (0) ≠ 𝜋𝐻 (1))
but two different traditionally fair algorithmic policies 𝜋𝐴 (i.e., 𝜋𝐴 (0) = 𝜋𝐴 (1)). On the left,

if the human selectively complies when 𝑎 = 1, fairness reduces relative to 𝜋𝐻 , i.e., 𝜋𝐴 is not

compliance-robustly fair although it is fair in isolation. On the right, it is easy to check that

no compliance function reduces fairness, i.e., 𝜋𝐴 is compliance-robustly fair. In general, as

we formalize next, compliance-robustness holds exactly when 𝜋𝐴 is “sandwiched” between

𝜋𝐻 (𝑥, 0) and 𝜋𝐻 (𝑥, 1).

Theorem 3.1. Given 𝜋𝐻 , an algorithmic policy 𝜋𝐴 is compliance-robustly fair if and only
if

𝛼 (𝜋𝐴) ≤ 𝛼 (𝜋𝐻 ) (1)

𝜋𝐻 (𝑥, 0) ≤ 𝜋𝐴 (𝑥, 0) (∀𝑥 ∈ X) (2)

𝜋𝐴 (𝑥, 1) ≤ 𝜋𝐻 (𝑥, 1) (∀𝑥 ∈ X). (3)

We give a proof in Appendix A.1. In general, it is easier to find compliance-robustly fair

policies when the human policy is rather unfair. In fact, the following corollary (proof in

Appendix A.1) shows that when the human policy is perfectly fair, there are no nontrivial

compliance-robust policies. This is because any deviation by the human that unequally

affects the two classes 𝑎 ∈ A provably results in unfairness.
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Corollary 3.2. If 𝛼 (𝜋𝐻 ) = 0, then 𝜋𝐴 is compliance-robustly fair if and only if 𝜋𝐴 (𝑥, 𝑎) =
𝜋𝐻 (𝑥, 𝑎) for all 𝑥 ∈ X and 𝑎 ∈ A.

Theorem 3.1 allows us to write down a simple optimization problem (see Algorithm 1)

to compute a compliance-robustly fair policy 𝜋0 that performs the best (i.e., minimizes the

loss 𝐿). Note that we have assumed nothing on the class of compliance functions 𝑐 (𝑥, 𝑎)
thus far. If we have a priori knowledge that 𝑐 only depends on some subset of the type

variables, then we can trivially remove the constraints in Algorithm 1 corresponding to

those types, enlarging the class of compliance-robust policies Πfair.

Algorithm 1: Compliance-robustly Fair Algorithm.

1: Input: the human policy 𝜋𝐻 .

2: Solve the following optimization problem:

𝜋0 = arg min

𝜋

𝐿(𝜋)

subj. to 𝛼 (𝜋) ≤ 𝛼 (𝜋𝐻 ),
𝜋𝐻 (𝑥, 0) ≤ 𝜋 (𝑥, 0), ∀𝑥 ∈ X,

𝜋 (𝑥, 1) ≤ 𝜋𝐻 (𝑥, 1), ∀𝑥 ∈ X.

3: Return: policy 𝜋0.

Extensions. As noted earlier, it can be easily shown that Theorem 3.1 holds for a more

general class of compliance functions. First, in practice, compliance may depend on the

output of 𝜋𝐴—e.g., the human decision-maker may comply only when the recommendation

𝜋𝐴 (𝑥, 𝑎) is sufficiently close to their own judgment 𝜋𝐻 (𝑥, 𝑎). In particular, consider a

policy-dependent compliance function which depends not only on the type and protected

attribute, but also on the output of 𝜋𝐴, i.e., 𝑐 : X × A × [0, 1] ↦→ {0, 1}. Then, since 𝜋𝐴 is

itself a function of 𝑥 and 𝑎, there exists some compliance function from our original class

such that

𝑐 (𝑥, 𝑎) = 𝑐 (𝑥, 𝑎, 𝜋𝐴 (𝑥, 𝑎)) .

Thus, Theorem 3.1 automatically subsumes this case.

Second, our results hold when the compliance function is random rather than determin-

istic. Specifically, consider a random compliance function of the form:

𝑐𝑝 (𝑥, 𝑎) =
{

1 with probability 𝑝 (𝑥, 𝑎)
0 otherwise,

yielding the joint human-AI policy

𝜋𝐶 (𝑥, 𝑎) = 𝜋𝐴 (𝑥, 𝑎) · 𝑝 (𝑥, 𝑎) + 𝜋𝐻 (𝑥, 𝑎) · (1 − 𝑝 (𝑥, 𝑎)) .

The proof of Theorem 3.1 works without modification for this class.



7

Another issue that arises in practice is that we often do not directly observe 𝜋𝐻 ; rather,

one must estimate 𝜋𝐻 ≈ 𝜋𝐻 using supervised learning on historical data prior to the

algorithmic intervention (we illustrate this on court sentencing data in Section 6.1). When

using 𝜋𝐻 instead of 𝜋𝐻 , our compliance-robustness guarantee gracefully degrades in the

estimation error of 𝜋𝐻 as follows. In particular, suppose that we have an estimate 𝜋𝐻 of 𝜋𝐻
satisfying |𝜋𝐻 (𝑥, 𝑎) − 𝜋𝐻 (𝑥, 𝑎) | ≤ 𝜖 for all 𝑥 ∈ X and 𝑎 ∈ A. If we run our algorithm using

𝜋𝐻 , then we obtain an algorithmic policy 𝜋𝐴 that is compliance-robustly fair for 𝜋𝐻 . Now,

let 𝜋𝐶 be the joint policy combining 𝜋𝐴 and 𝜋𝐻 , and let 𝜋𝐶 be the joint policy combining

𝜋𝐴 and 𝜋𝐻 . Note that for any compliance function 𝑐 , we have |𝜋𝐶 (𝑥, 𝑎) − 𝜋𝐶 (𝑥, 𝑎) | ≤ 𝜖 ,

from which it follows that 𝛼 (𝜋𝐶 ) ≤ 𝛼 (𝜋𝐶 ) + 2𝜖 . As a consequence, we have

𝛼 (𝜋𝐶 ) ≤ 𝛼 (𝜋𝐶 ) + 2𝜖 ≤ 𝛼 (𝜋𝐻 ) + 2𝜖 ≤ 𝛼 (𝜋𝐻 ) + 4𝜖,

where the second inequality follows from compliance-robust fairness of 𝜋𝐴 to 𝜋𝐻 , and the

third follows since 𝛼 (𝜋𝐻 ) ≤ 𝛼 (𝜋𝐻 ) + 2𝜖 by our assumption on the estimation error of 𝜋𝐻 .

Thus, 𝜋𝐴 satisfies a compliance-robust fairness guarantee within a slack of 4𝜖 .

4 PERFORMANCE OF COMPLIANCE-ROBUSTLY FAIR POLICIES
We have so far established the best-performing compliance-robust policy 𝜋0 (defined in

Algorithm 1) as a strong candidate for algorithmic advice. However, in most cases, we

would only provide algorithmic advice if we think it may perform better than the current

human policy, i.e., 𝐿(𝜋0) < 𝐿(𝜋𝐻 ). In this section, we provide simple conditions (that can

be easily verified with knowledge of 𝜋𝐻 and the performance-maximizing optimal 𝜋∗) to
see if algorithmic advice is desirable.

Given the human policy 𝜋𝐻 and the optimal policy 𝜋∗, let

𝑢 (𝑎) = {𝑥 ∈ X | 𝜋𝐻 (𝑥, 𝑎) ≥ 𝜋∗(𝑥, 𝑎)}
ℓ (𝑎) = {𝑥 ∈ X | 𝜋𝐻 (𝑥, 𝑎) < 𝜋∗(𝑥, 𝑎)}.

Intuitively,𝑢 (𝑎) denotes regions within group 𝑎 where the human policy 𝜋𝐻 assigns weakly

higher scores than the optimal policy 𝜋∗. Conversely, ℓ (𝑎) corresponds to the regions where
𝜋𝐻 assigns scores that are strictly lower than those assigned by 𝜋∗.
We now construct the following policy 𝜋𝐵 , which attempts to bridge between achieving

high performance and ensuring compliance-robustness with respect to 𝜋𝐻 :

𝜋𝐵 (𝑥, 𝑎) =
{
𝜋𝐻 (𝑥, 𝑎) if 𝑥 ∈ 𝑢 (0) ∪ ℓ (1)
𝜋∗(𝑥, 𝑎) otherwise.

This policy attempts to maximize performance by matching 𝜋∗ while satisfying constraints
(2)-(3) in Theorem 3.1 to ensure compliance-robustness. To provide some intuition, ℓ (1)
represents the regions where 𝜋𝐻 assigns lower scores than 𝜋∗ for the advantageous group.
As stated in Assumption 3, we can improve the performance of 𝜋𝐻 by increasing 𝜋𝐻 ’s

scores in ℓ (1). However, Theorem 3.1 shows that compliance-robustly fair policies cannot

return higher scores for any type within the advantageous group. Therefore, the best-

performing compliance-robustly fair policies must be the same as 𝜋𝐻 in ℓ (1). The same

argument holds for 𝑢 (0).
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The policy 𝜋𝐵 will be pivotal for us to understand the performance of compliance-robustly

fair policies, as well as their relationship to traditional fairness (in the next section). First,

𝜋𝐵 is compliance-robustly fair if it (in isolation) does not reduce fairness relative to 𝜋𝐻
(Lemma A.2 in Appendix A.2). Consequently, 𝜋𝐵 provides a constructive upper bound on

the performance of any compliance-robustly fair policy (Lemma A.3), which will be useful

for examining when the performance of 𝜋0 exceeds that of 𝜋𝐻 . Intuitively, if there exists a

compliance-robustly fair policy that can improve human performance, then 𝜋𝐵 must be

more accurate than 𝜋𝐻 .

Our next result, Theorem 4.1, shows simple conditions underwhich the optimal compliance-

robustly fair policy 𝜋0 is worth sharing with the human (i.e., when 𝐿(𝜋0) < 𝐿(𝜋𝐻 )). Namely,

we require that human policy 𝜋𝐻 is not perfectly fair (in which case, there is no nontrivial

compliance-robustly fair policy by Corollary 3.2), and 𝜋𝐻 deviates from the performance-

optimal policy 𝜋∗ in a direction that we can plausibly correct with algorithmic advice.

Theorem 4.1. Assume that 𝛼 (𝜋𝐻 ) ≠ 0, and that either 𝜋𝐻 (𝑥, 1) ≠ 𝜋∗(𝑥, 1) for some
𝑥 ∈ 𝑢 (1) or 𝜋𝐻 (𝑥, 0) ≠ 𝜋∗(𝑥, 0) for some 𝑥 ∈ ℓ (0). Then, we have 𝐿(𝜋0) < 𝐿(𝜋𝐻 ).

We give a proof in Appendix A.2. As discussed earlier, 𝜋𝐵 must equal 𝜋𝐻 in 𝑢 (0) and
ℓ (1). Consequently, compliance-robustly fair policies can only perform better than 𝜋𝐻 in

ℓ (0) and 𝑢 (1). As long as the human policy 𝜋𝐻 doesn’t perfectly match the optimal policy

𝜋∗ in at least one of these regions, we can construct a compliance-robustly fair policy that

achieves strictly better performance than 𝜋𝐻 .

5 COMPLIANCE-ROBUST FAIRNESS VS. TRADITIONAL FAIRNESS
As shown in the last section, compliance-robust fairness and performance improvement

are often compatible; the same holds for traditional fairness and performance improvement

[Hardt et al., 2016]. However, we will show that there is considerable tension between

maintaining both types of fairness (compliance-robust fairness and traditional algorithmic

fairness) while improving performance.

Building on the mild conditions required for a performance-improving compliance-

robust policy in Theorem 4.1, the next lemma establishes additional conditions that are

necessary and sufficient to find a policy 𝜋𝐴 that is also traditionally fair (i.e., 𝛼 (𝜋𝐴) = 0).

Lemma 5.1. Assume that 𝛼 (𝜋𝐻 ) ≠ 0, and that either 𝜋𝐻 (𝑥, 1) ≠ 𝜋∗(𝑥, 1) for some 𝑥 ∈ 𝑢 (1)
or 𝜋𝐻 (𝑥, 0) ≠ 𝜋∗(𝑥, 0) for some 𝑥 ∈ ℓ (0). Then, there exists a compliance-robustly fair policy
𝜋𝐴 that is also traditionally fair (𝛼 (𝜋𝐴) = 0) and performance-improving (𝐿(𝜋𝐴) < 𝐿(𝜋𝐻 ))
if and only if there exists a policy 𝜋 satisfying

𝜋 (1) ≤ 𝜋 (0) (4)

𝜋 (𝑥, 1) ≤ 𝜋𝐵 (𝑥, 1) (∀𝑥 ∈ X) (5)

𝜋 (𝑥, 0) ≥ 𝜋𝐵 (𝑥, 0) (∀𝑥 ∈ X) (6)

𝐿(𝜋) < 𝐿(𝜋𝐻 ). (7)

We give a proof in Appendix A.3. Next, we show a natural setting where we meet the

above conditions — namely, when the data-generating process is such that the optimal
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performance-maximizing policy 𝜋∗ is already perfectly fair without any added constraints

(i.e., 𝛼 (𝜋∗) = 0).

Theorem 5.2. Assume that 𝛼 (𝜋𝐻 ) ≠ 0, and that either 𝜋𝐻 (𝑥, 1) ≠ 𝜋∗(𝑥, 1) for some
𝑥 ∈ 𝑢 (1) or 𝜋𝐻 (𝑥, 0) ≠ 𝜋∗(𝑥, 0) for some 𝑥 ∈ ℓ (0). Then, if 𝜋∗ is fair, there is always a
compliance-robustly fair 𝜋𝐴 ∈ Πfair that is also traditionally fair and performance-improving.

Proof. Consider 𝜋𝐵 . Since 𝜋∗ is fair and 𝜋𝐵 (𝑥, 1) ≤ 𝜋∗(𝑥, 1) and 𝜋𝐵 (𝑥, 0) ≥ 𝜋∗(𝑥, 0), it
immediately follows that 𝜋𝐵 (1) ≤ 𝜋𝐵 (0). Thus, the claim follows from Lemma 5.1 (with

𝜋 = 𝜋𝐵). □

Unfortunately, it unlikely that an unconstrained performance-maximizing policy will be

inherently fair; this insight has been the driving force of the algorithmic fairness literature.

Rather, we may have to choose between the properties of compliance-robust fairness (to

avoid disparate harm relative to the human policy), performance improvement (to ensure

that algorithmic recommendations actually drive improved decisions), and traditional

fairness (to ensure the algorithm is fair in isolation). To this end, we now construct a simple

setting where we can only satisfy one criterion — performance improvement or traditional
fairness — for all compliance-robustly fair policies.

Intuitively, this tension can arise when the human policy is not far from the performance-

maximizing policy (𝜋𝐻 ≈ 𝜋∗) and this policy is quite unfair (𝛼 (𝜋∗) ≫ 0). Consider the

extreme case where 𝜋𝐻 = 𝜋∗ and 𝛼 (𝜋𝐻 ) > 0. By Theorem 3.1, 𝜋∗ is compliance-robustly

fair, and yet it is not traditionally fair. Thus, any traditionally fair policy must necessarily

perform worse than the existing 𝜋𝐻 or not be compliance-robustly fair. The following

proposition crystallizes this intuition in a nontrivial setting.

Proposition 5.3. There exists X, P, 𝐿, and 𝜋𝐻 satisfying 𝛼 (𝜋𝐻 ) ≠ 0 and 𝜋𝐻 ≠ 𝜋∗ such
that for any policy 𝜋 , 𝜋 cannot simultaneously satisfy all of the following: (i) 𝜋 ∈ Πfair, (ii)
𝛼 (𝜋) = 0, and (iii) 𝐿(𝜋) ≤ 𝐿(𝜋𝐻 ).

We give a proof in Appendix A.3. Given these results, if the goal is to improve fairness

and accuracy in human-AI collaboration outcomes, it may be preferable to design an

algorithmic policy that is accurate and compliance-robustly fair, but not fair in isolation.

One may question whether the challenges arising from selective compliance and the

resulting trade-offs are only relevant to our fairness definition — equality of opportunity

[Hardt et al., 2016]. Therefore, we show in Appendix A.4 that selective compliance can

lead to undesirable outcomes for a large class of fairness definitions that satisfies a mild

assumption.

6 EMPIRICAL EVALUATION
We empirically simulate the performance of our compliance-robustly fair algorithm using

criminal sentencing data fromVirginia from 2000 to 2004. In July 2002, the Virginia Criminal

Sentencing Commission (VCSC) introduced an algorithmic risk assessment tool to help

judges identify low-risk individuals with a felony conviction, with the goal of diverting

them from prison. Before making final sentencing decisions, judges were presented with

the model’s predicted risk score to facilitate risk assessment. We leverage data pre- and
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post- introduction of the risk assessment tool to assess the fairness and performance of

different algorithmic advice policies.

6.1 Experimental Setup
Following Stevenson and Doleac [2024], we obtained criminal sentencing records through a

Freedomof InformationAct request, and defendant demographics fromhttps://virginiacourtdata.

org/. This data spans 22, 871 sentencing events made by 229 different judges (see Appen-

dix A.5). We use data prior to the launch of the tool (𝑁 = 15, 108) to estimate each judge’s

policy 𝜋𝐻 , and data from 2003 and 2004 (𝑁 = 7, 763) for evaluation.

The true outcome 𝑦 denotes whether a defendant recidivates within three years fol-

lowing release.
4
All decision-making policies, including 𝜋𝐻 and 𝜋𝐴, generate risk scores

representing the estimated probability of recidivism for each defendant, based on the

observed defendant features. Defendants with lower predicted risk scores are more likely

to receive reduced sentences. The protected attribute 𝑎 is race, restricted to White or Black.

Estimating the judges’ policies. To construct 𝜋𝐻 , we need the judges’ independent as-
sessment of whether a defendant should be offered a reduced sentence. We estimate this

by examining when judges overrode pre-existing VCSC sentencing guidelines to reduce

a defendant’s sentence (see Appendix A.5 for details), prior to the introduction of the

algorithmic risk assessment tool. We train a gradient boosted decision tree [Ke et al., 2017]

to predict reduced sentences based on observed defendant covariates as well as the the

Judge ID (to obtain judge-specific policies).

Estimating the judges’ compliance functions. After the introduction of the algorithmic

risk assessment tool, compliance with the tool’s recommendations is an observed variable

in the data. We estimate a judge’s compliance function 𝑐 by training a gradient boosted

decision tree to predict compliance using the same set of defendant covariates as above.

Estimating the original risk assessment model. We do not have access to the original VCSC

risk assessment tool, but we observe the tool’s recommendations (i.e., low-risk or not).

Thus, we train a gradient boosted decision tree to predict the tool’s policy 𝜋actual

𝐴
, using

the same set of defendant covariates as above (except for Judge ID).

Policies. We then construct different human-AI collaborative policies for each judge using

our estimates of judge-specific 𝜋𝐻 , 𝑐 and 𝜋𝐴—(1) the actual observed policy 𝜋
actual

𝐶
(𝑥, 𝑎), (2)

our compliance-robustly fair policy 𝜋 robust

𝐶
(𝑥, 𝑎), (3) the performance-maximizing policy

𝜋∗
𝐶
(𝑥, 𝑎), and (4) the traditionally fair policy 𝜋 trad fair

𝐶
(𝑥, 𝑎). Note that these are all human-AI

policies and may not satisfy the properties guaranteed by their respective algorithmic

policies 𝜋𝐴 alone. When simulating the performance and fairness of 𝜋 robust

𝐴
, 𝜋∗

𝐴
and 𝜋 trad fair

𝐴
,

we make a key assumption that judges’ compliance functions would remain the same for

these alternative algorithmic risk assessment tools as in the original VCSC algorithmic risk

assessment tool. This may not be the case in practice, but our compliance-robust approach

guarantees hold under any new compliance function that judges may adopt.

4
In practice, we must also address the issue of selective labels—we only observe the true outcome when a

defendant is released [Lakkaraju et al., 2017]. We set aside this issue for the purpose of the simulation exercise.

https://virginiacourtdata.org/
https://virginiacourtdata.org/
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Metrics. For a human-AI policy 𝜋𝐶 , we examine both performance improvement, 𝐿(𝜋𝐻 )−
𝐿(𝜋𝐶 ), and fairness improvement, 𝛼 (𝜋𝐻 ) − 𝛼 (𝜋𝐶 ); details in Appendix A.5.

6.2 Results
Figure 2 shows a judge-level comparison of each of the four human-AI policies (relative

to the 𝜋𝐻 ) in terms of performance and fairness. First, as discussed in the findings of

Stevenson and Doleac [2024], we observe that the actual VCSC reduced performance

(Fig 2a) and fairness (Fig 2b), relative to the prior human-alone policy, for nearly every

judge. In contrast, our compliance-robust policy 𝜋 robust

𝐶
benefits almost every judge in

terms of both performance (Fig 2c) and fairness (Fig 2d). Only 2 of 193 judges have a

negligible deterioration in fairness, likely due to finite sample estimation error. Then, as

expected, the policy 𝜋∗
𝐶
that relies on a performance maximizing algorithm significantly

improves performance (Fig 2e), but comes at the cost of 34% of judges see deterioration

in fairness in their sentencing outcomes (Fig 2f). Finally, we consider the policy 𝜋 trad fair

𝐶

that relies on the highest-performing traditionally fair algorithm—we find that while it

improves accuracy (Fig 2g) and fairness (Fig 2h) on average, 20% of judges see reduced

performance and 13% of judges see deterioration in fairness due to selective compliance.

In contrast, our compliance-robust approach guarantees weakly improved performance

and fairness for every judge, regardless of their compliance pattern.

Mechanism. As illustrated in Figure 1, algorithmic recommendations can reduce fairness

when decision-makers disproportionately comply with the algorithmic recommendations

for an advantaged group whenever the algorithm offers a more favorable decision. To shed

more light, we examine the compliance pattern 𝑐problem and human-alone policies 𝜋Ave

𝐻
for

the subset of judges that worsen fairness the most (see Appendix A.5 for details). We define

the variable “AI Low Risk” for a defendant 𝑖 with features (𝑥𝑖 , 𝑎𝑖) as the indicator function
of whether the algorithmic policy is more lenient than the human alone policy, 𝜋𝐴 (𝑥𝑖 , 𝑎𝑖) >
𝜋𝐻 (𝑥𝑖 , 𝑎𝑖). Then, we test if judges comply more frequently for White defendants when the

algorithmic policy is more lenient:

𝑃 (Comply𝑖 = 1) = Logistic(𝛽0 + 𝛽1 ·White𝑖 + 𝛽2 · AI Low Risk𝑖+
𝛽3 · (AI Low Risk𝑖 ×White𝑖) + 𝜖𝑖) .

Indeed, we find that 𝛽3 is positive and statistically significant for all human-AI collaborative

policies except our compliance-robust policy, indicating that judges’ compliance behaviors

exacerbate existing racial biases under these policies. In contrast, our compliance-robustly

fair policy (𝜋 robust

𝐴
) effectively guards against such problematic compliance behaviors.

7 CONCLUSION
This paper illustrates the perils of selective compliance for equitable outcomes in human-AI

collaboration. In particular, even algorithms that satisfy traditional algorithmic fairness

criteria can amplify unfairness in decisions (relative to the human making decisions in iso-

lation). Unfortunately, a human decision-maker’s compliance pattern is a priori unknown,

and may even change over time, affecting fairness in outcomes. Therefore, we introduce the

concept of compliance-robust fairness and demonstrate how to derive algorithmic policies
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that weakly improve fairness regardless of the human’s compliance pattern. Naturally, it

is also important that the algorithmic advice achieves better performance than the human

alone. We show that, as long as the human policy is slightly sub-optimal and not perfectly

fair, the best performance-improving compliance-robust policy still generates improve-

ments over the human in isolation. However, it is not always the case that we can also

achieve the third property of traditional fairness — we may need to rely on algorithmic poli-

cies that are unfair in isolation to achieve compliance-robustly fair human-AI collaboration.

We illustrate our approach on criminal sentencing data from Virginia. We demonstrate

significant gains in fairness compared to a traditionally fair policy that does not account for

judges’ selective compliance patterns. Our findings contribute to the design of human-AI

collaboration systems that are “user-aware,” enhancing rather than diminishing fairness in

collaborative decisions.
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(a) Performance of 𝜋𝑎𝑐𝑡𝑢𝑎𝑙
𝐶

(b) Fairness of 𝜋𝑎𝑐𝑡𝑢𝑎𝑙
𝐶

(c) Performance of 𝜋𝑟𝑜𝑏𝑢𝑠𝑡
𝐶

(d) Fairness of 𝜋𝑟𝑜𝑏𝑢𝑠𝑡
𝐶

(e) Performance of 𝜋∗
𝐶

(f) Fairness of 𝜋∗
𝐶

(g) Performance of 𝜋 trad fair
𝐶

(h) Fairness of 𝜋 trad fair
𝐶

Fig. 2. We show the performance and fairness comparisons for 𝜋actual
𝐶

, 𝜋 robust
𝐶

, 𝜋∗
𝐶
and 𝜋 trad fair

𝐶

across the 193 judges in our evaluation sample. Bars to the right of the red dotted line correspond
to judges whose accuracy or fairness improve with the algorithmic recommendation.
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A APPENDIX: THEORETICAL RESULTS
A.1 Proof of Results in Section 3
Theorem 3.1. Given 𝜋𝐻 , an algorithmic policy 𝜋𝐴 is compliance-robustly fair if and only

if

𝛼 (𝜋𝐴) ≤ 𝛼 (𝜋𝐻 ) (1)

𝜋𝐻 (𝑥, 0) ≤ 𝜋𝐴 (𝑥, 0) (∀𝑥 ∈ X) (2)

𝜋𝐴 (𝑥, 1) ≤ 𝜋𝐻 (𝑥, 1) (∀𝑥 ∈ X). (3)

Proof. First, we show that (1), (2), and (3) are sufficient. Note that (2) and (3) imply

𝜋𝐻 (0) ≤ 𝜋𝐶 (0) ≤ 𝜋𝐴 (0) (8)

𝜋𝐴 (1) ≤ 𝜋𝐶 (1) ≤ 𝜋𝐻 (1), (9)

respectively, for any compliance function 𝑐 . Now, we have

𝜋𝐶 (1) − 𝜋𝐶 (0) ≤ 𝜋𝐻 (1) − 𝜋𝐻 (0) ≤ 𝛼 (𝜋𝐻 ),
where the first inequality follows from (8) and (9). Additionally, we have

𝜋𝐶 (0) − 𝜋𝐶 (1) ≤ 𝜋𝐴 (0) − 𝜋𝐴 (1) ≤ 𝛼 (𝜋𝐴) ≤ 𝛼 (𝜋𝐻 ) .
where the first inequality follows from (8) and (9), and the third from (1). The claim follows.

Next, we show that (1), (2), and (3) are necessary. Note that (1) is clearly necessary, or

the compliance function 𝑐 (𝑥, 𝑎) = 1 for all 𝑥, 𝑎 (i.e., the human always complies with the

algorithmic decision) reduces fairness. To see that (2) is necessary, suppose to the contrary

that 𝜋𝐻 (0, 𝑥0) > 𝜋𝐴 (0, 𝑥0) for some 𝑥 ∈ X. Then, consider the compliance function

𝑐 (𝑥, 𝑎) =
{

1 if 𝑥 = 𝑥0, 𝑎 = 0

0 otherwise.

For this 𝑐 , it is easy to see that by Assumption 1, 𝜋𝐻 (0) > 𝜋𝐶 (0), whereas 𝜋𝐶 (1) = 𝜋𝐻 (1).
By Assumption 2, it follows that 𝛼 (𝜋𝐶 ) > 𝛼 (𝜋𝐻 ), so 𝑐 reduces fairness. The proof for (3) is
similar. □

Corollary 3.2. If 𝛼 (𝜋𝐻 ) = 0, then 𝜋𝐴 is compliance-robustly fair if and only if 𝜋𝐴 (𝑥, 𝑎) =
𝜋𝐻 (𝑥, 𝑎) for all 𝑥 ∈ X and 𝑎 ∈ A.

Proof. Consider a compliance-robustly fair policy 𝜋𝐴, and assume to the contrary

that 𝜋𝐴 (𝑥0, 𝑎0) ≠ 𝜋𝐻 (𝑥0, 𝑎0) for some 𝑥0 ∈ X and 𝑎0 ∈ A. We assume that 𝑎0 = 1;

the case 𝑎0 = 0 is similar. By Theorem 3.1, we have 𝜋𝐴 (𝑥, 1) ≤ 𝜋𝐻 (𝑥, 1) for all 𝑥 ∈ X,

http://jmlr.org/papers/v24/23-0389.html
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so 𝜋𝐴 (𝑥0, 1) < 𝜋𝐻 (𝑥0, 1). Then, by Assumption 1, we have 𝜋𝐴 (1) < 𝜋𝐻 (1). Also by

Theorem 3.1, we have 𝜋𝐴 (𝑥, 0) ≥ 𝜋𝐻 (𝑥, 0) for all 𝑥 ∈ X, so 𝜋𝐴 (0) ≥ 𝜋𝐻 (0). Thus, we have
𝜋𝐴 (1) < 𝜋𝐻 (1) = 𝜋𝐻 (0) ≤ 𝜋𝐴 (0),

where the equality holds by our assumption that 𝛼 (𝜋𝐻 ) = 0. Since 𝜋𝐴 (1) ≠ 𝜋𝐴 (0), we
must have 𝛼 (𝜋𝐴) > 0 = 𝛼 (𝜋𝐻 ), so by Theorem 3.1, 𝜋𝐴 is not compliance-robustly fair, a

contradiction. □

A.2 Proof of Results in Section 4
To prove Theorem 4.1, we need the following lemmas. It follows by the construction of 𝜋𝐵
that it satisfies:

Lemma A.1. We have 𝜋𝐵 (𝑥, 0) ≥ 𝜋𝐻 (𝑥, 0) and 𝜋𝐵 (𝑥, 1) ≤ 𝜋𝐻 (𝑥, 1) for all 𝑥 ∈ X.

As we will see shortly, 𝜋𝐵 provides a constructive upper bound on the performance of any

compliance-robustly fair policy, which will be useful for examining when the performance

of 𝜋0 exceeds that of 𝜋𝐻 . We begin by noting that 𝜋𝐵 itself is compliance-robustly fair if it

(in isolation) does not reduce fairness relative to 𝜋𝐻 .

Lemma A.2. If 𝛼 (𝜋𝐵) ≤ 𝛼 (𝜋𝐻 ), then 𝜋𝐵 is compliance-robustly fair.

Proof. By Lemma A.1, 𝜋𝐵 satisfies conditions (2) and (3) in Theorem 3.1 by construction.

If 𝛼 (𝜋𝐵) ≤ 𝛼 (𝜋𝐻 ), then (1) also holds, so by Theorem 3.1, 𝜋𝐵 is compliance-robustly

fair. □

Furthermore, the next result shows that 𝜋𝐵 performs at least as well as the optimal

compliance-robustly fair policy 𝜋0.

Lemma A.3. We have 𝐿(𝜋0) ≥ 𝐿(𝜋𝐵).
Proof. It suffices to prove that 𝜋0 has higher deviation than 𝜋𝐵 , in which case the claim

follows by Assumption 3. We need to show that for all 𝑥 ∈ X and 𝑎 ∈ A, we have{
𝜋0(𝑥, 𝑎) ≤ 𝜋𝐵 (𝑥, 𝑎) if 𝜋𝐵 (𝑥, 𝑎) ≤ 𝜋∗(𝑥, 𝑎)
𝜋0(𝑥, 𝑎) ≥ 𝜋𝐵 (𝑥, 𝑎) if 𝜋𝐵 (𝑥, 𝑎) ≥ 𝜋∗(𝑥, 𝑎) .

(10)

Now, consider a point 𝑥 ∈ 𝑢 (0); in this case, we have

𝜋0(𝑥, 0) ≥ 𝜋𝐻 (𝑥, 0) ≥ 𝜋∗(𝑥, 0),
where the first inequality follows since 𝜋0 is compliance-robustly fair so it satisfies (2),

and the second since 𝑥 ∈ 𝑢 (0). Since 𝜋𝐵 (𝑥, 0) = 𝜋𝐻 (𝑥, 0) for 𝑥 ∈ 𝑢 (0), (10) holds. Next,
consider a point 𝑥 ∈ ℓ (1); in this case, we have

𝜋0(𝑥, 1) ≤ 𝜋𝐻 (𝑥, 1) < 𝜋∗(𝑥, 1)
where the first inequality follows since 𝜋0 satisfies (3), and the second since 𝑥 ∈ ℓ (1). Since
𝜋𝐵 (𝑥, 1) = 𝜋𝐻 (𝑥, 1) for 𝑥 ∈ ℓ (1), (10) holds. Finally, if 𝑥 ∉ 𝑢 (0) ∪ ℓ (1), then 𝜋𝐵 (𝑥, 𝑎) =

𝜋∗(𝑥, 𝑎) for all 𝑎 ∈ A, so (10) holds. Thus, 𝜋0 has higher deviation than 𝜋𝐵 , so the claim

follows. □

Now, we prove Theorem 4.1.



17

Theorem 4.1. Assume that 𝛼 (𝜋𝐻 ) ≠ 0, and that either 𝜋𝐻 (𝑥, 1) ≠ 𝜋∗(𝑥, 1) for some
𝑥 ∈ 𝑢 (1) or 𝜋𝐻 (𝑥, 0) ≠ 𝜋∗(𝑥, 0) for some 𝑥 ∈ ℓ (0). Then, we have 𝐿(𝜋0) < 𝐿(𝜋𝐻 ).

Proof. If 𝛼 (𝜋𝐵) ≤ 𝛼 (𝜋𝐻 ), then by Lemma A.2, 𝜋𝐵 is compliance-robustly fair; the

assumptions in the theorem statement clearly imply that 𝐿(𝜋𝐵) < 𝐿(𝜋𝐻 ), so the claim

follows. Otherwise, we must have 𝛼 (𝜋𝐵) > 𝛼 (𝜋𝐻 ). Furthermore, Lemma A.1 implies that

𝜋𝐵 (1) ≤ 𝜋𝐻 (1) and 𝜋𝐵 (0) ≥ 𝜋𝐻 (0). Together with Assumption 2, these three conditions

imply that

𝜋𝐵 (1) < 𝜋𝐵 (0) .
Intuitively, this might happen when the optimal policy satisfies 𝜋∗(1) < 𝜋∗(0), but the
human policy reverses this relationship. To compensate, we can reduce the performance

of 𝜋𝐵 to “shrink” the gap between 𝜋𝐵 (1) and 𝜋𝐵 (0). In particular, consider scaling the

decisions as follows:

𝜋𝐴,𝜆 (𝑥, 𝑎) =
{
𝜋𝐻 (𝑥, 𝑎) if 𝑥 ∈ 𝑢 (0) ∪ ℓ (1)
(1 − 𝜆)𝜋𝐵 (𝑥, 𝑎) + 𝜆𝜋𝐻 (𝑥, 𝑎) otherwise.

Note that 𝜋𝐴,0 = 𝜋𝐵 and 𝜋𝐴,1 = 𝜋𝐻 . In addition, it is easy to see that 𝜋𝐴,𝜆 has strictly

lower deviation than 𝜋𝐻 for all 𝜆 ∈ [0, 1) (strictness is due to Assumption 1 and our

assumption on 𝜋𝐻 in the theorem statement). Next, by construction, for all 𝜆 ∈ [0, 1], we
have 𝜋𝐴,𝜆 (𝑥, 1) ≤ 𝜋𝐻 (𝑥, 1) and 𝜋𝐴,𝜆 (𝑥, 0) ≥ 𝜋𝐻 (𝑥, 0). Now, consider the function

𝑔(𝜆) = 𝜋𝐴,𝜆 (1) − 𝜋𝐴,𝜆 (0).
By the above, we have

𝑔(0) = 𝜋𝐵 (1) − 𝜋𝐵 (0) ≤ 0

𝑔(1) = 𝜋𝐻 (1) − 𝜋𝐻 (0) ≥ 0.

Thus, by the intermediate value theorem, there exists 𝜆∗ ∈ [0, 1] such that 𝑔(𝜆∗) = 0. Since

𝑔(1) = 𝜋𝐻 (1) − 𝜋𝐻 (0) = 𝛼 (𝜋𝐻 ) ≠ 0,

we know that 𝜆∗ ≠ 1, so 𝜆∗ ∈ [0, 1). Thus, 𝜋𝐴,𝜆∗ satisfies (1), (2), and (3), so by Theorem 3.1,

it is compliance-robustly fair. In addition, since 𝜆∗
1
∈ [0, 1), by the above, it has strictly

lower deviation than 𝜋𝐻 , so 𝐿(𝜋𝐴,𝜆∗) < 𝐿(𝜋𝐻 ). Thus, we have 𝐿(𝜋0) ≤ 𝐿(𝜋𝐴,𝜆∗) < 𝐿(𝜋𝐻 ),
as claimed. □

A.3 Proof of Results in Section 5
Lemma 5.1. Assume that 𝛼 (𝜋𝐻 ) ≠ 0, and that either 𝜋𝐻 (𝑥, 1) ≠ 𝜋∗(𝑥, 1) for some 𝑥 ∈ 𝑢 (1)

or 𝜋𝐻 (𝑥, 0) ≠ 𝜋∗(𝑥, 0) for some 𝑥 ∈ ℓ (0). Then, there exists a compliance-robustly fair policy
𝜋𝐴 that is also traditionally fair (𝛼 (𝜋𝐴) = 0) and performance-improving (𝐿(𝜋𝐴) < 𝐿(𝜋𝐻 ))
if and only if there exists a policy 𝜋 satisfying

𝜋 (1) ≤ 𝜋 (0) (4)

𝜋 (𝑥, 1) ≤ 𝜋𝐵 (𝑥, 1) (∀𝑥 ∈ X) (5)

𝜋 (𝑥, 0) ≥ 𝜋𝐵 (𝑥, 0) (∀𝑥 ∈ X) (6)

𝐿(𝜋) < 𝐿(𝜋𝐻 ). (7)
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Proof. We first show that existence of 𝜋𝐴 implies existence of 𝜋 . By Theorem 3.1, 𝜋𝐴
satisfies

𝜋𝐴 (1) = 𝜋𝐴 (0)
𝜋𝐻 (𝑥, 0) ≤ 𝜋𝐴 (𝑥, 0) (∀𝑥 ∈ X)
𝜋𝐴 (𝑥, 1) ≤ 𝜋𝐻 (𝑥, 1) (∀𝑥 ∈ X).

Now, let

𝜋 (𝑥, 𝑎) =
{

max{𝜋𝐴 (𝑥, 0), 𝜋𝐵 (𝑥, 0)} if 𝑎 = 0

min{𝜋𝐴 (𝑥, 1), 𝜋𝐵 (𝑥, 1)} if 𝑎 = 1.

By construction, 𝜋 satisfies (5) and (6). Furthermore, we have

𝜋 (1) ≤ 𝜋𝐴 (1) = 𝜋𝐴 (0) ≤ 𝜋 (0),
where the first inequality follows since 𝜋 (𝑥, 1) ≤ 𝜋𝐴 (𝑥, 1) and the second since 𝜋 satisfies

𝜋 (𝑥, 0) ≥ 𝜋𝐴 (𝑥, 0). Thus, 𝜋 satisfies (4). Finally, to show that 𝐿(𝜋) < 𝐿(𝜋𝐻 ), it suffices

to show that 𝜋 has lower or equal deviation compared to 𝜋𝐴, since this implies that

𝐿(𝜋) ≤ 𝐿(𝜋𝐴) < 𝐿(𝜋𝐻 ). To this end, recall that for all 𝑥 ∈ X and 𝑎 ∈ A, we have

𝜋𝐵 (𝑥, 𝑎) ∈ {𝜋𝐻 (𝑥, 𝑎), 𝜋∗(𝑥, 𝑎)}. If 𝜋𝐴 (𝑥, 𝑎) ≠ 𝜋𝐻 (𝑥, 𝑎) and 𝜋 (𝑥, 𝑎) ≠ 𝜋𝐴 (𝑥, 𝑎), then we

must 𝜋 (𝑥, 𝑎) = 𝜋𝐵 (𝑥, 𝑎), so 𝜋 (𝑥, 𝑎) ∈ {𝜋𝐻 (𝑥, 𝑎), 𝜋∗(𝑥, 𝑎)}. In this case, we cannot have

𝜋 (𝑥, 𝑎) = 𝜋𝐻 (𝑥, 𝑎), since either 𝑎 = 0 and 𝜋 (𝑥, 0) ≥ 𝜋𝐴 (𝑥, 0) > 𝜋𝐻 (𝑥, 0), or 𝑎 = 1 and

𝜋 (𝑥, 1) ≤ 𝜋𝐴 (𝑥, 1) < 𝜋𝐻 (𝑥, 1). Thus, we must have 𝜋 (𝑥, 𝑎) = 𝜋∗(𝑥, 𝑎). In general, it follows

that 𝜋 (𝑥, 𝑎) ∈ {𝜋𝐴 (𝑥, 𝑎), 𝜋∗(𝑥, 𝑎)}, which straightforwardly implies that 𝜋 has lower or

equal deviation compared to 𝜋𝐴. The claim follows.

Next, we prove that existence of 𝜋 implies the existence of 𝜋𝐴. First, if 𝜋𝐵 (1) ≤ 𝜋𝐵 (0),
then the result follows from the proof of Theorem 4.1, which shows that if 𝜋𝐵 (1) ≤ 𝜋𝐵 (0),
then there exists a compliance-robustly fair policy 𝜋 such that 𝛼 (𝜋) = 0. Thus, it suffices

to consider the case 𝜋𝐵 (1) > 𝜋𝐵 (0). In this case, by (5) and (6), we have

𝜋 (𝑥, 1) ≤ min{𝜋∗(𝑥, 1), 𝜋𝐻 (𝑥, 1)} = 𝜋𝐵 (𝑥, 1) ≤ 𝜋∗(𝑥, 1)
𝜋 (𝑥, 0) ≥ max{𝜋∗(𝑥, 0), 𝜋𝐻 (𝑥, 0)} = 𝜋𝐵 (𝑥, 0) ≥ 𝜋∗(𝑥, 0).

Thus, 𝜋𝐵 has lower or equal deviation compared to 𝜋 , so 𝐿(𝜋𝐵) ≤ 𝐿(𝜋) < 𝐿(𝜋𝐻 ). Consider
𝜋𝐴,𝜆 (𝑥, 𝑎) = 𝜆𝜋 (𝑥, 𝑎) + (1 − 𝜆)𝜋𝐵 (𝑥, 𝑎),

where 𝜆 ∈ [0, 1]. Note that 𝜋𝐴,0 = 𝜋𝐵 and 𝜋𝐴,1 = 𝜋 . It is easy to see that 𝜋𝐴,𝜆 has lower or

equal deviation compared to 𝜋 , so 𝐿(𝜋𝐴,𝜆) ≤ 𝐿(𝜋) < 𝐿(𝜋𝐻 ) for all 𝜆. Now, define
𝑔(𝜆) = 𝜋𝐴,𝜆 (1) − 𝜋𝐴,𝜆 (0),

so

𝑔(0) = 𝜋𝐵 (1) − 𝜋𝐵 (0) > 0

𝑔(1) = 𝜋 (1) − 𝜋 (0) < 0.

By the intermediate value theorem, there exists 𝜆∗ ∈ (0, 1) such that 𝑔(𝜆∗) = 0. Then,

we have 𝛼 (𝜋𝐴,𝜆∗) = 0 and 𝐿(𝜋𝐴,𝜆∗) < 𝐿(𝜋𝐻 ). It also directly follows from Theorem 3.1



19

that 𝜋𝐴,𝜆∗ is compliance-robustly fair. Thus, 𝜋𝐴,𝜆∗ satisfies our desiderata, so the claim

follows. □

Proposition 5.3. There exists X, P, 𝐿, and 𝜋𝐻 satisfying 𝛼 (𝜋𝐻 ) ≠ 0 and 𝜋𝐻 ≠ 𝜋∗ such
that for any policy 𝜋 , 𝜋 cannot simultaneously satisfy all of the following: (i) 𝜋 ∈ Πfair, (ii)
𝛼 (𝜋) = 0, and (iii) 𝐿(𝜋) ≤ 𝐿(𝜋𝐻 ).

Proof. Let X = {1} be singleton; thus, we can omit it from our notation. Let

P(𝑎,𝑦) =


1

2
(1 − 𝜖) if 𝑎 = 1 ∧ 𝑦 = 1

1

2
𝜖 if 𝑎 = 1 ∧ 𝑦 = 0

1

2
𝜖 if 𝑎 = 0 ∧ 𝑦 = 1

1

2
(1 − 𝜖) if 𝑎 = 0 ∧ 𝑦 = 0

for any 𝜖 ∈ (0, 1/7]. Let the loss be

𝐿(𝜋) = E[(𝜋 (𝑎) − 𝑦)2] = 1

2

[
(1 − 𝜖) (𝜋 (1) − 1)2 + 𝜖𝜋 (1)2 + 𝜖 (𝜋 (0) − 1)2 + (1 − 𝜖)𝜋 (0)2

]
.

Then, it is easy to check that so that

𝜋∗(𝑎) =
{

1 − 𝜖 if 𝑎 = 1

𝜖 if 𝑎 = 0.

In addition, suppose that the human policy is

𝜋𝐻 (𝑎) =
{

1 − 𝜖 if 𝑎 = 1

𝜖/2 if 𝑎 = 0.

In this case, 𝜋𝐵 = 𝜋∗, and 𝛼 (𝜋𝐵) = 𝛼 (𝜋∗) < 𝛼 (𝜋𝐻 ), so by Theorem 4.1, 𝜋𝐵 is compliance-

robustly fair; in addition, it strictly improves performance, though it is itself unfair. Thus,

Πfair ≠ ∅.
Next, we show that for any compliance-robustly fair policy 𝜋 , if 𝛼 (𝜋) = 0, then 𝐿(𝜋) ≥

𝐿(𝜋𝐻 ). Since X is singleton, we have 𝜋 (𝑎) = 𝜋 (𝑎), so 𝛼 (𝜋) = 0 implies 𝜋 (0) = 𝜋 (1). Thus,
it suffices to consider a policy 𝜋 (0) = 𝜋 (1) = 𝛽 . For any such policy, the loss is

𝐿(𝜋) = 1

2

[
(1 − 𝜖) (𝛽 − 1)2 + 𝜖𝛽2 + 𝜖 (𝛽 − 1)2 + (1 − 𝜖)𝛽2

]
=

1

2

[
(𝛽 − 1)2 + 𝛽2

]
,

which is minimized when 𝛽 = 1/2, in which case 𝐿(𝜋) = 1/4. In contrast, we have

𝐿(𝜋𝐻 ) =
1

2

[
(1 − 𝜖) (𝜖)2 + 𝜖 (1 − 𝜖)2 + 𝜖 (𝜖/2 − 1)2 + (1 − 𝜖) (𝜖/2)2

]
=

1

2

[
(𝜖/2)2 + 2𝜖 (1 − 𝜖)

)
.

It is easy to verify that when 𝜖 ∈ (0, 1

7
], we have 𝐿(𝜋𝐻 ) < 1

4
≤ 𝐿(𝜋).

□
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A.4 Compliance Issues for General Fairness Conditions
We define a general class of fairness criteria, subsuming demographic parity [Calders

et al., 2009, Zliobaite, 2015] and equalized odds [Chen et al., 2023, Hardt et al., 2016].

We then show that, under this general class, fair policies are not necessarily compliance-

robustly fair. Thus, in all cases, one must optimize separately for performance-improving

compliance-robustly fair policies (as illustrated in Algorithm 1).

We define a fairness criterion as a function that takes a policy as input and outputs a

value representing how fair the policy is. For example, 𝛼 (𝜋) = |𝜋 (1) − 𝜋 (0) | quantifies
fairness under the equality of opportunity criterion.

Definition A.4. A fairness criterion is a function 𝜑 : Π → R≥0, where Π is the space

of all policies. Given 𝜑 , we say a policy 𝜋 ∈ Π is fairer than another policy 𝜋 ′ ∈ Π if

𝜑 (𝜋) < 𝜑 (𝜋 ′).

Next, we extend our concept of a compliance-robustly fair policy to general fairness

criteria.

Definition A.5. Given a human policy 𝜋𝐻 and an algorithmic policy 𝜋𝐴, we say that 𝜋𝐴 is

compliance-robustly fair with respect to 𝜋𝐻 if for every compliance function 𝑐 , the resulting

human-AI policy 𝜋𝐶 satisfies 𝜑 (𝜋𝐶 ) ≤ 𝜑 (𝜋𝐻 ).

The following assumption characterizes the class of fairness criteria that are susceptible

to selective compliance issues. That is, if a fairness criterion satisfies the assumption, there

is tension between traditional fairness and compliance-robust fairness.

Assumption 4. Given a fairness condition 𝜑 , there exist policies 𝜋low and 𝜋high, and a
compliance function 𝑐0, such that (i) we have

𝜑 (𝜋low) < 𝜑 (𝜋high),
(ii) the human-AI policy

𝜋𝐶 (𝑥, 𝑎) =
{
𝜋low(𝑥, 𝑎) if 𝑐0(𝑥, 𝑎) = 1

𝜋high(𝑥, 𝑎) otherwise,

satisfies

𝜑 (𝜋𝐶 ) < 𝜑 (𝜋high),
and (iii) the human-AI policy

𝜋 ′
𝐶 (𝑥, 𝑎) =

{
𝜋high(𝑥, 𝑎) if 𝑐0(𝑥, 𝑎) = 1

𝜋low(𝑥, 𝑎) otherwise.

satisfies

𝜑 (𝜋 ′
𝐶 ) < 𝜑 (𝜋high).

In this assumption, condition (i) says that according to 𝜑 , the policies 𝜋low and 𝜋high
are increasingly unfair. Then, condition (ii) says that if 𝜋high is the human policy and 𝜋low
is the AI policy, then the resulting human-AI policy under the compliance function 𝑐0 is
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strictly fairer than the human policy 𝜋high. Finally, condition (iii) says that if 𝜋low is the

human policy and 𝜋high is the AI policy, then the resulting human-AI policy under 𝑐0 is

again strictly more fair than 𝜋high. In fact, condition (i) is not necessary, but we include it

since it adds intuition—the human-AI policy can be thought of as moving closer to 𝜋low
from 𝜋high in both cases.

Intuitively, conditions (ii) and (iii) say that there exist two policies 𝜋low and 𝜋high with

different fairness levels such that either of the two human-AI policies formed by combining

them has fairness strictly less than 𝜋high. These conditions are met by a wide range of

algorithmic fairness definitions; later in this section, we will show that two widely-used

fairness definitions—demographic parity and equalized odds—satisfy it.

Next, we show that any fairness definition satisfying Assumption 4 is vulnerable to the

selective compliance problem. This result demonstrates the pervasive nature of the selective

compliance problem; as a result, there exists an inherent tension between traditional

fairness and compliance-robust fairness for a broad class of fairness definitions.

Theorem A.6. For any fairness condition 𝜑 satisfying Assumption 4, there exists a human
policy 𝜋𝐻 and an algorithmic policy 𝜋𝐴 such that 𝜑 (𝜋𝐴) ≤ 𝜑 (𝜋𝐻 ) but 𝜋𝐴 is not compliance-
robustly fair for 𝜋𝐻 .

Proof. We show that it is always possible to construct a human-AI policy 𝜋𝐶 that is less

fair than the human-alone policy 𝜋𝐻 under Assumption 4, even though the AI policy 𝜋𝐴 is

fairer than the human-alone policy 𝜋𝐻 .

Let 𝜋low, 𝜋high, and 𝑐0 be as defined in Assumption 4, and consider the policy

𝜋1(𝑥, 𝑎) =
{
𝜋high(𝑥, 𝑎) if 𝑐0(𝑥, 𝑎) = 1

𝜋low(𝑥, 𝑎) otherwise.

By Assumption 4, 𝜑 (𝜋1) < 𝜑 (𝜋high). Also, consider the policy

𝜋2(𝑥, 𝑎) =
{
𝜋low(𝑥, 𝑎) if 𝑐0(𝑥, 𝑎) = 1

𝜋high(𝑥, 𝑎) otherwise.

By Assumption 4, 𝜑 (𝜋2) < 𝜑 (𝜋high). Now, if 𝜑 (𝜋1) ≤ 𝜑 (𝜋2), then consider

𝜋
(1)
𝐶

(𝑥, 𝑎) =
{
𝜋1(𝑥, 𝑎) if 𝑐0(𝑥, 𝑎) = 1

𝜋2(𝑥, 𝑎) otherwise.

Note that 𝜋
(1)
𝐶

= 𝜋high since 𝜋
(1)
𝐶

(𝑥, 𝑎) = 𝜋1(𝑥, 𝑎) = 𝜋high(𝑥, 𝑎) if 𝑐0(𝑥, 𝑎) = 1 and

𝜋
(1)
𝐶

(𝑥, 𝑎) = 𝜋2(𝑥, 𝑎) = 𝜋high(𝑥, 𝑎) otherwise. Thus, 𝜑 (𝜋2) < 𝜑 (𝜋high) = 𝜑 (𝜋 (1)
𝐶

). Tak-
ing 𝜋𝐴 = 𝜋1 and 𝜋𝐻 = 𝜋2, we have 𝜑 (𝜋1) ≤ 𝜑 (𝜋2), but 𝜋1 is not compliance-robustly fair

for 𝜋2 because 𝜑 (𝜋 (1)
𝐶

) > 𝜑 (𝜋2).
Otherwise, we have 𝜑 (𝜋1) > 𝜑 (𝜋2). Let

𝜋
(2)
𝐶

(𝑥, 𝑎) =
{
𝜋2(𝑥, 𝑎) if 𝑐0(𝑥, 𝑎) = 1

𝜋1(𝑥, 𝑎) otherwise.
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where

𝑐0(𝑥, 𝑎) = 1 − 𝑐0(𝑥, 𝑎) .

Similar to before, we have 𝜋
(2)
𝐶

= 𝜋high. Thus, 𝜑 (𝜋1) < 𝜑 (𝜋high) = 𝜑 (𝜋 (2)
𝐶

). Taking 𝜋𝐴 = 𝜋2

and 𝜋𝐻 = 𝜋1, we have 𝜑 (𝜋2) < 𝜑 (𝜋1), but 𝜋2 is not compliance-robustly fair for 𝜋1 because

𝜑 (𝜋 (2)
𝐶

) > 𝜑 (𝜋1). □

Demographic parity. Now, we show that demographic parity satisfies Assumption 4,

implying that it suffers from compliance-related problems. In particular, redefine the

following:

𝜋 (𝑎) =
∑︁
𝑥∈X

𝜋 (𝑥, 𝑎)P(𝑥 | 𝑎),

so demographic parity is given by 𝛼𝐷 (𝜋) = |𝜋 (1) − 𝜋 (0) |. We need to establish a setting

for which the two policies and the compliance function in Assumption 4 exist. Let X = {1}
be singleton; then, we can omit it from our notation. Next, we construct 𝜋high and 𝜋low as

follows:

𝜋low(𝑎) =
{

1

2
+ 𝜖 if 𝑎 = 1

1

2
− 𝜖 if 𝑎 = 0

𝜋high(𝑎) =
{

1

2
+ 3𝜖 if 𝑎 = 1

1

2
− 2𝜖 if 𝑎 = 0,

where 𝜖 ∈ (1/6, 1/4). Also, consider the compliance function:

𝑐0(𝑎) =
{

1 if 𝑎 = 1

0 if 𝑎 = 0,

which implies 𝜋𝐶 and 𝜋 ′
𝐶
are as follows:

𝜋𝐶 (𝑎) =
{

1

2
+ 𝜖 if 𝑎 = 1

1

2
− 2𝜖 if 𝑎 = 0

𝜋 ′
𝐶 (𝑎) =

{
1

2
+ 3𝜖 if 𝑎 = 1

1

2
− 𝜖 if 𝑎 = 0

With these definitions, it is easy to see that Assumption 4 is satisfied.

Equalized Odds. The case of equalized odds is similar to that of equal opportunities.

Redefine the following:

𝜋 (𝑎,𝑦) =
∑︁
𝑥∈X

𝜋 (𝑥, 𝑎)P(𝑥 |𝑎,𝑦) .

Then, equalized odds can be defined as follows:

𝜑 (𝜋) = sup

𝑦∈{0,1}
|𝜋 (1, 𝑦) − 𝜋 (0, 𝑦) |.
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As before, consider X = {1} be singleton, then we can omit it from our notation. Note that

𝜋 (1, 𝑦) = 𝜋 (1) and 𝜋 (0, 𝑦) = 𝜋 (0). Next, we define 𝜋high and 𝜋low as follows:

𝜋low(𝑎) =
{

1

2
+ 𝜖 if 𝑎 = 1

1

2
− 𝜖 if 𝑎 = 0

𝜋high(𝑎) =
{

1

2
+ 3𝜖 if 𝑎 = 1

1

2
− 2𝜖 if 𝑎 = 0,

where 𝜖 ∈ (1/6, 1/4). Also, consider the compliance function:

𝑐0(𝑎) =
{

1 if 𝑎 = 1

0 if 𝑎 = 0,

which implies that 𝜋𝐶 and 𝜋 ′
𝐶
are as follows:

𝜋𝐶 (𝑎) =
{

1

2
+ 𝜖 if 𝑎 = 1

1

2
− 2𝜖 if 𝑎 = 0

𝜋 ′
𝐶 (𝑎) =

{
1

2
+ 3𝜖 if 𝑎 = 1

1

2
− 𝜖 if 𝑎 = 0

Again, it is easy to see that Assumption 4 is satisfied.

A.5 Experimental Details
Sample Selection. Following the setup of Stevenson and Doleac [2024], we restrict the

sample to defendants that are eligible for the non-violent risk assessment tool, which is

our population of interest—we select defendants that (1) committed a drug, larceny, or

fraud offense, (2) do not have a history of violent offenses, and (3) are considered for a

prison or jail sentence. Then, we augment the criminal sentence records by merging it

with defendants’ demographic information obtained from the Virginia Court Data website.

We also restrict to Non-Hispanic White and Black defendants.

Defendant Covariates. Following Stevenson and Doleac [2024], we use “Defendant Sex”,

“Defendant Age”, “Defendant Race”, “Defendant in Youthful Offender Program”, “Charge

Type”, “Mandatory Minimum Sentence”, “Recommend Prison”, “First Offender”, “Recom-

mended Sentence Length”, and “Primary Offenses”.

Estimating the judges’ policies. We leverage guidelines-recommended sentences to infer

judges’ perceived recidivism risk. The guidelines provide judges with a range of suitable

sentences (e.g., 6 months to 2 years), the midpoint of which is defined as the “guidelines-

recommended sentence.” Following Stevenson and Doleac [2024], we consider the judge

to perceive an offender to have a low recidivism risk if (1) the guideline-recommended

sentence is prison (more than 12 months), but the judge assigns a sentence of 6 months

or less of jail time, or (2) the guideline-recommended sentence is jail (less or equal to 12

months), but the judge assigns a sentence of zero (i.e., not incarcerated at all).
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Human-AI Collaborative Policy Construction. We first estimate the optimal performance-

maximizing policy 𝜋∗
𝐴
, our compliance-robustly fair policy 𝜋 robust

𝐴
, and the performance-

maximizing traditionally fair (i.e., satisfying Equality of Opportunity) policy 𝜋 trad fair

𝐴
for

each judge (based on their estimated 𝜋𝐻 ) using data prior to the deployment of the risk

assessment tool.

To learn 𝜋∗
𝐴
and 𝜋 trad fair

𝐴
, we require the true outcome 𝑦 for defendants. Consistent

with VCSC’s definitions, we label any defendant that receives another felony conviction

within a three-year window after their release as a recidivist. We then train a gradient

boosted decision tree [Ke et al., 2017] to predict whether a defendant is a recidivist based

on the same observed defendant covariates, yielding 𝜋∗
𝐴
. For 𝜋 trad fair

𝐴
, we use the methods

proposed by Weerts et al. [2023] to enforce the Equality of Opportunity fairness constraint.

Then, we have the following four policies:

𝜋actual

𝐶 (𝑥, 𝑎) =
{
𝜋actual

𝐴
(𝑥, 𝑎) if 𝑐 (𝑥, 𝑎) = 1

𝜋𝐻 (𝑥, 𝑎) otherwise.

𝜋 robust

𝐶 (𝑥, 𝑎) =
{
𝜋 robust

𝐴
(𝑥, 𝑎) if 𝑐 (𝑥, 𝑎) = 1

𝜋𝐻 (𝑥, 𝑎) otherwise.

𝜋∗
𝐶 (𝑥, 𝑎) =

{
𝜋∗
𝐴
(𝑥, 𝑎) if 𝑐 (𝑥, 𝑎) = 1

𝜋𝐻 (𝑥, 𝑎) otherwise.

𝜋 trad fair

𝐶 (𝑥, 𝑎) =
{
𝜋 trad fair

𝐴
(𝑥, 𝑎) if 𝑐 (𝑥, 𝑎) = 1

𝜋𝐻 (𝑥, 𝑎) otherwise,

Metrics. To evaluate performance, we compute the average loss as follows:

𝐿(𝜋𝐻 ) − 𝐿(𝜋𝐶 ) =
1

𝑁

𝑁∑︁
𝑖=1

ℓ (𝜋𝐻 (𝑥𝑖 , 𝑎𝑖), 𝑦𝑖) −
1

𝑁

𝑁∑︁
𝑖=1

ℓ (𝜋𝐶 (𝑥𝑖 , 𝑎𝑖), 𝑦𝑖),

where 𝑁 is the number of samples in our evaluation dataset. The outcome 𝑦𝑖 indicates

whether the defendant 𝑖 in fact recidivates (which we observe in the data). Note that a

positive difference in average loss indicates an improvement in performance over the

judges’ policy. Similarly, we evaluate fairness using the following metric:

𝛼 (𝜋𝐻 ) − 𝛼 (𝜋𝐶 ),
where 𝛼 (𝜋) is the slack in group fairness for 𝜋 . In this case, a positive difference indicates

that 𝜋𝐶 improves equity over the judges’ policy.

Problematic Compliance Patterns. We focus on judges who exhibit fairness deterioration,

as shown in Figure 2—i.e., 𝛼 (𝜋𝐻 ) − 𝛼 (𝜋𝐶 ) < 0 across 𝜋∗
𝐴
, 𝜋actual

𝐴
, and 𝜋 trad fair

𝐴
— and select

the bottom 50%, yielding 11 judges. From these judges, we derive a single “problematic

compliance function”, 𝑐problem, by averaging individual judges’ compliance functions. Simi-

larly, we compute the “average human-alone policy,” 𝜋Ave

𝐻
, by averaging their individual

human-alone policies.
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(a) Fairness of four human-AI policies un-
der the observed problematic compliance
function

(b) Regression coefficients from regress-
ing judges’ compliance decisions on defen-
dants’ race and AI’s recommendation

Fig. 3. In the left panel, we show the fairness comparison of 𝜋actual
𝐶

, 𝜋 robust
𝐶

, 𝜋∗
𝐶
and 𝜋 trad fair

𝐶
for a

problematic compliance function. In the right panel, we present the regression coefficients from the
regression specification in Section 6.2. The error bars are 95% bootstrapped confidence intervals.

Using the problematic compliance function 𝑐problem and the average human-alone policy

𝜋Ave

𝐻
, we simulate the four human-AI policies: 𝜋∗

𝐶
, 𝜋 robust

𝐶
, 𝜋actual

𝐶
, and 𝜋 trad fair

𝐶
. We compare

their fairness and present the results in Figure 3a. The vertical axis represents the unfairness

level,𝛼 (𝜋𝐻 )−𝛼 (𝜋𝐶 ). A negative value indicates that the human-AI policy 𝜋𝐶 is less fair than

the human-alone policy 𝜋𝐻 . Indeed, all human-AI policies, except the compliance-robustly

fair policy, reduce fairness.

In the regression presented in Section 6.2, the parameter 𝛽3 captures our quantity of

interest—a positive value indicates that judges comply more often for White defendants

when the algorithmic recommendation is more lenient than their independent decisions,

suggesting that racial disparities are exacerbated under algorithmic advice. We run this

regression for each of the four human-AI policies. As shown in Figure 3b, the estimated

𝛽3 is positive and statistically significant for all human-AI policies (𝜋actual

𝐶
, 𝜋 trad fair

𝐶
, and

𝜋∗
𝐶
), indicating that judges’ compliance behaviors exacerbate existing racial biases under

these policies. In contrast, our compliance-robustly fair policy (𝜋 robust

𝐴
) effectively guards

against such problematic compliance behaviors.

As discussed in Section 4, the algorithmic policy cannot further advantage the advan-

taged group (in this case, Whites) than the human-alone policy without risking increased

disparities for problematic compliance patterns. We identify a defendant subgroup that

experiences the most significant fairness deterioration under our “problematic compliance

function”—specifically, 40-50 year old males who are not first offenders, are charged with

drug-related offenses, and are recommended prison time based on VCSC guidelines. In Fig-

ure 4, we illustrate the compliance implications for different algorithmic advice strategies.

Our compliance-robust policy is the only one that preserves overall fairness by imitating

the human policy for the advantaged subgroup, as in the construction of 𝜋𝐵 .
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(a) 𝜋actual
𝐴

(b) 𝜋∗
𝐴

(c) 𝜋 trad fair
𝐴

(d) 𝜋 robust
𝐴

Fig. 4. Policy depictions for a defendant subgroup that evokes increased unfairness: [male, 40-50
years old, guideline recommends prison, non-first offender, drug-related offenses]. 𝜋 robust

𝐴
preserves

fairness by imitating the human policy.


	Abstract
	1 Introduction
	2 Problem Formulation
	3 Characterization of Compliance-Robust Fairness
	4 Performance of Compliance-Robustly Fair Policies
	5 Compliance-Robust Fairness vs. Traditional Fairness
	6 Empirical Evaluation
	6.1 Experimental Setup
	6.2 Results

	7 Conclusion
	References
	A Appendix: Theoretical Results
	A.1 Proof of Results in Section 3
	A.2 Proof of Results in Section 4
	A.3 Proof of Results in Section 5
	A.4 Compliance Issues for General Fairness Conditions
	A.5 Experimental Details


