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Machine learning is increasingly used to inform consequential decisions. Yet, these predictive models have

been found to exhibit unexpected defects when trained on real-world observational data, which are plagued

with confounders and biases. Thus, it is critical to involve domain experts in an interactive process of

developing predictive models; interpretability offers a promising way to facilitate this interaction. We propose

a novel approach to interpreting complex, blackbox machine learning models by constructing simple decision

trees that summarize their reasoning process. Our algorithm leverages active learning to extract richer and

more accurate interpretations than several baselines. Furthermore, we prove that by generating a sufficient

amount of data through our active learning strategy, the extracted decision tree converges to the exact

decision tree, implying that we provably avoid overfitting. We evaluate our algorithm on a random forest to

predict diabetes risk on a real electronic medical record dataset, and show that it produces significantly more

accurate interpretations than several baselines. We also conduct a user study demonstrating that humans

are able to better reason about our interpretations than state-of-the-art rule lists. We then perform a case

study with domain experts (physicians) regarding our diabetes risk prediction model, and describe several

insights they derived using our interpretation. Of particular note, the physicians discovered an unexpected

causal issue by investigating a subtree in our interpretation; we were able to then verify that this endogeneity

indeed existed in our data, underscoring the value of interpretability.

Key words : interpretability, risk prediction, observational data, predictive analytics, human-in-the-loop,

active learning
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1. Introduction

Machine learning has revolutionized our ability to use data to inform important decisions in a

variety of domains such as healthcare, criminal justice, and retail. For instance, predictive ana-

lytics have been used to score patient risk (Ustun and Rudin 2016), identify personalized medical

treatment regimens (Wang et al. 2016, Bertsimas et al. 2017), make bail decisions for defendants

(Kleinberg et al. 2017, Jung et al. 2017), price products (Ferreira et al. 2015), and set retail

staffing levels (Fisher et al. 2017). At the same time, machine learning models have been shown to
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exhibit unexpected defects when trained on real-world observational data, stemming from endoge-

nous explanatory variables (LaLonde 1986, Angrist et al. 1996), unobserved censoring, or other

systematic biases in reported outcomes data (Bastani et al. 2015, Mullainathan and Obermeyer

2017). In such cases, the predictive model may achieve good out-of-sample accuracy on the original

observational dataset, but perform poorly when deployed in the real world. While these issues can

sometimes be addressed through the use of carefully chosen instrumental variables (e.g., as is the

case in Wang et al. 2016, Fisher et al. 2017), this process first requires understanding the source

of confounding or bias, which in turn requires significant domain knowledge. Oftentimes, with the

growing number of explanatory variables and the complexity of machine learning, even domain

experts may need to examine and understand the learned model before the presence of confounding

or bias becomes apparent. Thus, it is critical to involve domain experts in an iterative process of

developing the predictive model to ensure that its predictions are unbiased; we refer to this process

as human-in-the-loop analytics.

Yet, state-of-the-art machine learning models such as random forests and deep neural nets tend

to be blackbox in nature (Rudin 2014); in other words, these models have a complex, opaque

structure and tend to use many explanatory variables, making it difficult for humans to understand

and verify the model’s reasoning process. Thus, one proposed solution for facilitating human-in-

the-loop analytics is the use of interpretable machine learning models (Doshi-Velez and Kim 2017).

Examples of previously-proposed interpretable models include sparse linear models (Ustun and

Rudin 2016), rule lists (Letham et al. 2015), and decision sets (Lakkaraju et al. 2016). These

models are simple and transparent, allowing domain experts to easily understand how predictions

are made; with this knowledge, they can identify potential sources of bias or errors in the model

by checking if the model mimics their own reasoning process.

However, the constraint of using an interpretable model instead of a complex blackbox model

comes at a significant cost in predictive accuracy, which in turn may result in poor decision-making

(Ribeiro et al. 2016, Koh and Liang 2017). Thus, decision-makers are often faced with a tough

decision: either (1) use an interpretable model which may produce worse decisions due to poor

predictive performance, or (2) use a blackbox model which has strong predictive performance on

observational data, but may exhibit arbitrary unexpected defects upon deployment in the real

world. In this paper, motivated by discussions with industry experts, we propose a third alternative:

to extract a simple interpretation that approximates a complex blackbox model. We express our

interpretation in the form of a decision tree (Breiman et al. 1984), whose size can be chosen based

on the desired strength of the approximation to the blackbox model. Then, the domain expert

can restrict her focus on understanding and verifying the extracted decision tree rather than the

original blackbox model. As long as the decision tree is a good approximation of the blackbox
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model, any significant confounding or bias in the blackbox model should translate to the tree.

Thus, if the expert validates the tree’s reasoning, then we may deploy the high-performing blackbox

model with the confidence that it is likely free of significant bias or confounding as well.

1.1. Contributions

We extract simple, accurate decision trees from complex blackbox machine learning models. We

make no assumptions on the structure of the blackbox model, and only require the ability to run

it on a chosen set of inputs. We choose decision trees as our interpretations, since they are easy to

understand, nonparametric, and can compactly represent complex functions.

Algorithm. We require an algorithm for constructing decision trees that accurately represents

a given blackbox model. While decision trees are easy to interpret, a common problem is that they

typically achieve poor predictive performance since they easily overfit to data. To overcome this

difficulty, we leverage the ability to generate arbitrarily large amounts of training data by sampling

new inputs and labeling them using the blackbox model. We propose a novel algorithm that uses

active learning to generate inputs that flow down a given path in the decision tree, and then use

these newly generated training points to avoid overfitting.

Theory. We prove that by actively sampling a sufficient number of points using our algorithm,

our extracted decision tree converges to the exact decision tree. In other words, the estimation

error of our decision tree interpretation goes to zero asymptotically, implying that our decision tree

avoids overfitting the small initial training set. The key challenge to establishing this result is that

the branches in a greedy decision tree are estimated by maximizing a non-convex objective function.

As a result, even very small errors in the estimated objective function can dramatically change

its maximizer. Under mild technical conditions, we establish that asymptotically, the estimated

objective converges uniformly to the true objective with high probability, and consequently, the

maximizer converges as well.

Evaluation. We first evaluate the accuracy and interpretability of our decision tree interpreta-

tions on a real dataset from a leading electronic medical record provider. We use a random forest as

our blackbox model to predict the risk of a diabetes diagnosis for patients; as expected, the random

forest is significantly more accurate than interpretable models such as decision trees (Breiman et al.

1984), rule lists (Yang et al. 2017), and sparse linear models (Tibshirani 1996). We then examine

the faithfulness of our extracted decision tree to the blackbox model compared to several baselines;

We find that the predictions of our extracted decision tree much more closely match the predictions

of the random forest, implying that it is a more faithful interpretation. Next, we perform a user

study on 46 graduate students (with at least some machine learning or data science background),

and ask them to reason about both our decision tree interpretation and a state-of-the-art rule list
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interpretation. We find that users are more accurate on similar questions regarding decision trees

than rule lists, suggesting that trees may be more interpretable to humans.

Finally, we conduct a case study with three domain experts (physicians) about our diabetes

risk prediction model using our tree interpretation. We describe a number of insights they gained

by examining our interpretations. Of particular note, the physicians discovered an unexpected

causal issue by investigating a subtree in our interpretation; we were able to then verify that this

endogeneity indeed existed in our data, underscoring the value of interpretability and human-in-

the-loop analytics.

1.2. Related Work

The interaction between decision-makers (managers) and algorithms is an emerging topic of inter-

est in the operations management literature. A number of papers have pointed out that humans

experience “algorithm aversion” and erroneously distrust algorithmic predictions (Dietvorst et al.

2015). This is especially true when the task at hand is something that appears to require human

intuition – for example, recommending jokes (Yeomans et al. 2016), or setting sale prices (Phillips

et al. 2015, Caro and de Tejada Cuenca 2018). However, this aversion can be overcome by bet-

ter explaining how the algorithm produces its prediction (Yeomans et al. 2016), or by giving the

decision-maker power to even slightly modify the predictions (Dietvorst et al. 2016). Caro and

de Tejada Cuenca (2018) further explore ways to improve managers’ adherence to the algorithm’s

price recommendations by setting better reference points. On a similar note, from an implemen-

tation perspective, Ferreira et al. (2015) discuss that Rue La La managers were concerned about

adopting a blackbox price-setting algorithm; the authors were able to ensure successful adoption

by using interpretable models and explaining the algorithm’s reasoning process.

Generally, the above literature has assumed that humans should trust algorithms (since they pro-

duce more accurate predictions or decisions), and study ways (such as using interpretable models)

to create this trust. Van Donselaar et al. (2010) is a notable exception: they empirically demon-

strate that an automated inventory replenishment algorithm for retail stores does not optimize for

hidden costs (e.g., in-store handling costs). In this case, incorporating manager input can improve

decisions. Our discussions with industry experts revealed many additional instances where the

algorithm produced suboptimal predictions due to biases or confounders that were not accounted

for during model development; their primary concerns about blackbox algorithms stemmed from

the possibility that such an algorithm may be deployed in the real world without catching the

error (see discussion in §6 for details). We propose using an approximate interpretation of the

blackbox model to help decision-makers identify these problems before deploying the model. Once

a problem is identified, one can use existing methods to correct for the bias or confounders (e.g.,

using instrumental variables in decision trees as proposed by Wang et al. 2017).
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There are three general approaches to interpretability. We can directly deploy an interpretable

model, derive local interpretations for individual predictions from a blackbox model, or extract a

global interpretation for the entire blackbox model. We expand on this literature below.

Interpretable models. There has been a long history of learning simple, interpretable models such

as decision trees, rule lists and sparse linear models. This approach is particularly relevant when

accuracy is less important than fairness and transparency, e.g., in making bail decisions (Kleinberg

et al. 2017, Jung et al. 2017) or predicting crime recidivism (Zeng et al. 2017).

Decision trees (Breiman et al. 1984) are considered highly interpretable, but unfortunately, they

often produce poor predictive accuracy due to overfitting. This concern has been alleviated using

non-greedy approaches, such as rule lists (Wang and Rudin 2015, Letham et al. 2015), decision sets

(Lakkaraju et al. 2016), and optimal decision trees (Bertsimas and Dunn 2017). Interpretable model

families based on sparse linear models (Tibshirani 1996, Ustun and Rudin 2016, Jung et al. 2017)

have also been proposed; relatedly, Caruana et al. (2012) propose generalized additive models, which

are linear combinations of nonparametric single-feature models. However, ultimately, such methods

still come at the cost of predictive accuracy; consequently, the machine learning community has

generally favored blackbox models such as random forests and deep neural nets for tasks where

predictive accuracy is of foremost importance (Ribeiro et al. 2016, Koh and Liang 2017).

Local Interpretations. Another proposed approach is to use a complex, blackbox model, but to

generate local interpretations for every prediction that can be verified by an expert. Specifically,

given a new test point x, Ribeiro et al. (2016) generates an interpretation for the prediction f(x) by

fitting an interpretable model locally around x and using it as the explanation for the prediction.

While this technique can help experts understand a specific prediction, they cannot help understand

the model as a whole, making it less useful for diagnosing problems with the data or model itself

(e.g., confounders or systematic bias). Furthermore, such an approach may not be suitable for

largely automated tasks such as product pricing or nurse-led interventions, where a domain expert

may not be able to verify each prediction individually (see discussion in §6).

Global interpretations. We propose using a complex, blackbox model and producing a simple

interpretation for its overall reasoning process. Past techniques have focused on identifying influen-

tial features. The relative influence scores the contribution of each feature in tree-based models such

as random forests (Friedman 2001). Similarly, Datta et al. (2016) use the Shapley value to quantify

the influence of each feature. In our evaluation, we show that these approaches cannot help under-

stand more complex reasoning performed by the model, as is needed to understand the dependence

of a model on potentially endogenous features. In concurrent work, Lakkaraju et al. (2017) extract

global explanations in the form of decision sets. However, this approach does not scale to datasets

with many features (e.g., our diabetes dataset has hundreds of features), which we verified using
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the authors’ original implementation. Since decision sets are quite similar to rule lists, we compare

the optimized implementation provided by Yang et al. (2017) trained on blackbox model labels (as

proposed by Lakkaraju et al. (2017)) against our interpretations. We demonstrate that our active

learning strategy produces much more accurate interpretations, enabling experts to understand

and validate a larger portion of the blackbox model’s reasoning process (which manifests in our

evaluation with physicians). Furthermore, the richness and accuracy of our interpretations can

be gracefully (and provably) tuned by actively sampling more points and growing larger trees; in

contrast, prior approaches (using rule lists or decision sets) do not use active learning and cannot

produce richer interpretations without overfitting the training data.

2. Problem Formulation

We are given a complex, blackbox machine learning model f : X →Y. Typically such a model is

learned from an observational dataset: Xtrain ∈ Rn×d is the feature matrix, whose rows Xi corre-

spond to the d observed features (explanatory variables) of the ith sample; Ytrain ∈Rn is a vector

of outcomes for each of the n samples. In general, depending on the data, there is a feasible set

of feature values (i.e., Xtrain ⊆ X ) and outcomes (i.e., Ytrain ⊆ Y). A data scientist then chooses

f from a desired model family (e.g., random forests, neural nets) to best fit Ytrain ≈ f(Xtrain).

To maintain full generality, we assume we do not know f and simply have blackbox access to it,

i.e., given any feasible point x ∈ X , we can obtain f(x). Our goal is to approximate f using an

axis-aligned decision tree T (Breiman et al. 1984).

We start by establishing some notation to describe decision trees. For brevity, we will denote the

set [k] = {1, ...k}.

Definition 1. An axis-aligned constraint is a constraint on a chosen feature value, e.g., C =

(xi ≤ t), where i ∈ [d], t ∈ R, and d is the dimension of the input space. The feasible set of C is

F(C) = {x∈X | x satisfies C}.

Note that more general constraints can be built from existing constraints using negations ¬C,

conjunctions C1 ∧C2, and disjunctions C1 ∨C2.

Definition 2. A decision tree T is a binary tree. An internal node N = (NL,NR,C) of T has

a left child node NL and a right child node NR, and is labeled with an axis-aligned constraint

C = (xi ≤ t). A leaf node N = (y) of T is associated with a label y ∈ Y. We use NT to denote the

root node of T .

The decision tree is a function T :X →Y as well. More precisely, a leaf node N = (y) is interpreted

as a functionN(x) = y. An internal nodeN = (NL,NR,C) is interpreted as a functionN(x) =NL(x)

if x ∈ F(C), and N(x) = NR(x) otherwise. In other words, at an internal node, we take the left

path if the point x satisfies the node’s constraint, and we take the right path otherwise. Then,
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High risk
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Figure 1 Overview of our decision tree extraction algorithm.

T (x) =NT (x), i.e., any point x ∈ X follows the appropriate path of the decision tree until a leaf

node is reached.

For a node N ∈ T , we let CN denote the conjunction of the constraints along the path from the

root of T to N . Note that CN is defined recursively: for the root NT , we have CNT = True, and for

an internal node N = (NL,NR,C), we have CNL =CN ∧C and CNR =CN ∧¬C.

Definition 3. We say an input x∈X is routed to the leaf node N ∈ T if x∈F(CN).

In what follows, we focus on the case X = Rd and Y = [m], i.e., our features are binary or

continuous, and our task is classification into one of m> 1 groups. Our approach easily generalizes

to the case where X contains categorical features, and to the case where Y = R (i.e., regression

task). We omit formalizing this case for brevity of notation.

We measure the performance of an interpretation using a metric called fidelity, which measures

how well the interpretation’s predictions match those of the original blackbox model on a test set.

Definition 4. The fidelity of an interpretation g with respect to a blackbox classifier f on a

test set Xtest is the performance of g on {x, f(x) | x∈Xtest}. The performance metric is typically

AUROC if f is a binary classifier, accuracy if f is a multi-class classifier, and mean-squared error

if f is a regression.

Note that the purpose of an interpretation is not to perform well on the test set itself, but to mimic

the performance of the blackbox model; this ensures that any errors or biases in the blackbox

model are likely to translate to the interpretation as well.

3. Decision Tree Extraction

We give an overview of our decision tree extraction algorithm in Figure 1. At a high level, our

algorithm proceeds as follows. We first fit a Gaussian mixture model to the training set Xtrain to

estimate the joint feature distribution P over (future) inputs from X . We then iteratively (i) use



8

P to generate new samples that are labeled using the blackbox model, and (ii) grow our decision

tree interpretation by an additional node. In particular, for any given leaf node N in our current

extracted tree, we can sample a new point x∼P |CN from the corresponding subpopulation (i.e.,

subpopulation of inputs that are routed to N), and compute its corresponding label y= f(x) using

the blackbox model f . Our algorithm uses this newly generated data to grow the extracted tree by

determining the next best leaf node to split (i.e., convert to an internal node and two leaf nodes).

The procedure is shown in Algorithm 1.

Algorithm 1 Decision Tree Extraction

Inputs: Blackbox model f ; training set Xtrain; # of points n to actively sample at each node;
maximum size k of extracted tree
procedure ExtractTree

Estimate P from Xtrain using a Gaussian mixture model
Let y0 be the majority label on Xtrain using f
Initialize T to be a decision tree with a single (root) node NT = (y0)
Initialize leaves←{(NT , ProcessLeaf(NT ))}
for t∈ [k] do

Identify (N, (i∗, t∗, yL, yR,G))∈ leaves with the highest gain G, and remove it
In T , replace N with N ′ = (NL,NR, (xi∗ ≤ t∗)), where NL = (yL) and NR = (yR)
Add (NL, ProcessLeaf(NL)) and (NR, ProcessLeaf(NR)) to leaves

end for
return T

end procedure
procedure ProcessLeaf(Leaf node N)

Sample points x(1), ..., x(n) ∼P |CN and let P̂N = Uniform({x(1), ..., x(n)})
Using P̂N , compute (i∗, t∗) as in Eq. (1), estimate yL, yR as in Eq. (3), and let G=G(i∗, t∗;PN)
return (i∗, t∗, yL, yR,G)

end procedure

Remark 1. Algorithm 1 does not split a leaf node N if the classification accuracy is perfect in

that node (i.e., Prx∼P [f(x) = yN |CN ] = 1). In these cases, Algorithm 1 may terminate early (i.e.,

before growing to size k) and produce a smaller tree.

Input distribution. We first use expectation maximization to fit a mixture P of axis-aligned

Gaussian distributions over X :

pP(x) =
K∑
i=1

φiN (µi,Σi) ,

where pP is the probability density function associated with the distribution P, the weights φ ∈

[0,1]K satisfy
∑K

i=1 φi = 1, and the ith Gaussian distribution in the mixture has mean µi ∈Rd and a

diagonal covariance matrix Σi ∈Rd
2
. Note that we have imposed that the features are independent

within each Gaussian (which will enable efficient active sampling), but the resulting mixture P can

still fit well-behaved joint distributions with a sufficient number of mixture components.
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Growing the Tree. We initialize the tree with a single leaf node NT = (y0), where y0 is the

majority label on Xtrain using the blackbox model f . We then proceed iteratively: at each iteration,

we choose a leaf node N = (y) and replace it with a new internal node and two child leaf nodes.

Specifically, we replace N with the internal node N ′ = (NL,NR,C), where NL = (yL) and NR = (yR)

are the two new leaf nodes, and C = (xi∗ ≤ t∗) is the constraint for the new internal node. The choice

of which leaf node N to split in each iteration, as well as the resulting parameters (NL,NR,C),

is dictated by maximizing the gain function (Eq. 1), which is estimated for each leaf node by

sampling new points from the subpopulation of points routed to that node (detailed below). This

process is repeated k− 1 times to grow a tree of size at most k.

Estimating the Gain. Given a distributionQ over X (we will later takeQ to be the distribution

of input points routed to a leaf node N in the decision tree), the gain function G measures the

quality of a candidate split xi ≤ t (where i∈ [d] and t∈R):

G(i, t;Q) = −H(f, (xi ≤ t);Q) −H(f, (xi > t);Q) +H(f, (True);Q) , (1)

H(f,C;Q) =

(
1−

∑
y∈Y

Prx∼Q[f(x) = y |C]2

)
·Prx∼Q[C] ,

where H is the Gini impurity (Breiman et al. 1984), which is the standard metric used in the gain

function for constructing decision tree classifiers. This metric can be replaced with other measures

such as entropy (for classification) or mean-squared error (for regression).

For any leaf node N , we would ideally maximize G to obtain the optimal split for that node:

(i∗, t∗) = arg max
i∈[d],t∈R

G(i, t;P |CN),

where P |CN is the distribution of points that are routed to N in the decision tree. However, it is

impossible to optimize G using the exact distribution P |CN , since this would require integrating

over f (recall that we only have blackbox access to f). Instead, we use a finite-sample estimate

P̂N ≈P |CN . More precisely, we sample points x(1), ..., x(n) ∼P |CN (the exact procedure is detailed

later in this section), and let

P̂N = Uniform({x(1), ..., x(n)}).

Then, we maximize G to obtain the optimal split:

(i∗, t∗) = arg max
i∈[d],t∈R

G(i, t; P̂N). (2)

Given the optimal constraint xi∗ ≤ t∗ from Eq. 2 for node N , the new leaf node labels (if we were

to split on node N) would be

yL = arg max
y∈Y

Prx∼P̂N [f(x) = y |CN ∧ (xi ≤ t)] , (3)

yR = arg max
y∈Y

Prx∼P̂N [f(x) = y |CN ∧ (xi > t)].
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The node chosen to be replaced is the one with the highest potential gain in the current tree.

As described in Algorithm 1, we maintain a mapping leaves between the current leaf nodes of the

tree and the potential improvement in the gain function if we were to split that node (as well as

the constraint and child nodes associated with such a split). In each iteration, we select the leaf

node with the highest gain from leaves to split. We then update leaves by removing the node that

was converted to an internal node and adding the resulting two new leaf nodes (note that adding

each new node requires sampling an additional n points to estimate the gain and optimal potential

split in that subpopulation).

Sampling points. Finally, we describe how our algorithm samples x ∼ P | C, where C is a

conjunction of axis-aligned constraints corresponding to some leaf node:

C = (xi1 ≤ t1)∧ ...∧ (xik ≤ tk)∧ (xj1 > s1)∧ ...∧ (xjh > sh).

In general, some inequalities in C may be redundant, so we first simplify the expression. First, for

two constraints xi ≤ t and xi ≤ t′ such that t≤ t′, the first constraint implies the second, so we can

discard the latter. Similarly, for two constraints xi > s and xi > s
′ such that s≥ s′, we can discard

the latter. Second, given two constraints xi ≤ t and xi > s, we can assume that t≥ s; otherwise C

is unsatisfiable, so the gain (1) would have been zero and the algorithm would have terminated.

In summary, we can assume C contains at most one inequality (xi ≤ t) and at most one inequality

(xi > s) per i∈ [d], and if both are present, then the two are not mutually exclusive. For simplicity,

we assume C contains both inequalities for each i∈ [d]:

C = (s1 ≤ x1 ≤ t1)∧ ...∧ (sd ≤ xd ≤ td).

Now, recall that P is a mixture of axis-aligned Gaussians, so it has probability density function

pP(x) =
K∑
j=1

φj · pN (µj ,Σj)(x) =
K∑
j=1

φj

d∏
i=1

pN (µji,σji)(xi),

where σji = (Σj)ii. The conditional distribution is

pP|C(x)∝
K∑
j=1

φj

d∏
i=1

pN (µji,σji)|C(xi)

=
K∑
j=1

φj

d∏
i=1

pN (µji,σji)|(si≤xi≤ti)(xi).

Since the Gaussians are axis-aligned, the unnormalized probability of each component is

φ̃′j =

∫
φj

d∏
i=1

pN (µji,σji)|(si≤xi≤ti)(xi)dx

= φj

d∏
i=1

(
Φ

(
ti−µji
σji

)
−Φ

(
si−µji
σji

))
,
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where Φ is the cumulative density function of the standard Gaussian distribution N (0,1). Then,

the normalization constant is Z =
∑K

j=1 φ̃
′
j, and the component probabilities are φ̃=Z−1φ̃′. Thus,

to sample x∼P |C, we sample j ∼Categorical(φ̃), and

xi ∼N (µji, σji) | (si ≤ xi ≤ ti) for each i∈ [d].

We use standard algorithms for sampling truncated Gaussian distributions to sample each xi.

Remark 2. Note that we construct decision trees greedily, following the widely-used approach

of Breiman et al. (1984). Our active learning strategy can be adapted around a non-greedy deci-

sion learning algorithm (e.g., Bertsimas and Dunn 2017) as well. However, we prefer the greedy

algorithm because (i) it is significantly more scalable and thus, more user-friendly, and (ii) we

believe the greedy algorithm is more intuitive as an interpretation since it routes points based on

the most explanatory feature (which we believe mimics human reasoning). The main advantages

of non-greedy approaches are that they do not overfit to data as easily, and produce smaller trees.

We prove in Section 4 that our algorithm does not overfit as long as we sample enough points, and

our user study in Section 5.3 demonstrates that humans are able to reason more accurately about

our interpretations compared to non-greedy rule lists despite our trees being significantly larger.

4. Theoretical Guarantees

Decision trees are an expressive nonparametric model family, and can represent any function if (i)

the tree is grown large enough, and (ii) there are sufficient samples to avoid overfitting (Breiman

et al. 1984). As discussed earlier, our active learning approach ensures that the statistical estimation

error can be made arbitrarily small (i.e., we avoid overfitting) by sampling enough points per round.

Accordingly, our main result (Theorem 2) proves that our interpretation converges asymptotically

to the exact decision tree of the same size (i.e., the decision tree with no statistical error) as the

number of sampled points n grows large.

To provide intuition, we begin with the simple case where all features are binary (§4.1). In this

setting, we show that an interpretation of depth D= d+1 (where d is the dimension of the observed

features) is equivalent to any (nonparametric) blackbox model with high probability as long as

n is sufficiently large (Theorem 1). In other words, a sufficiently large interpretation is the true

blackbox model itself with high probability. Note that this simple setting often holds since many

features are binary in practice (e.g., indicator variables for diagnoses).

However, it is not always feasible to use an interpretation of depth d+ 1, particularly in “big

data” settings where d is very large. In our user studies, we observed that users found it difficult

to reason with trees with more than 32 leaves (corresponding to depth D = 5 for uniform trees).

Thus, we introduce the notion of an “exact tree” of size k, which is the greedy decision tree with
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k leaves and zero estimation error (i.e., no overfitting to statistical noise). When the features are

binary, we prove that the exact tree of depth d+ 1 is equivalent to an arbitrary blackbox model

(Lemma 2). In §4.2, we consider general features, and prove that our interpretation converges to

the exact tree when sufficient samples are drawn in each round (Theorem 2).

Exact Tree. We begin by describing the construction of the exact decision tree. The construction

mirrors that of the estimated tree in our algorithm, but we use the exact value of f integrated over

the distribution P (which cannot be computed in practice since we only have blackbox access to

f) instead of sampling points.

We initialize a tree with a single leaf node NT∗ = (y∗0), where y∗0 is the majority label of f on

the data distribution P on X . Then, in each iteration, we choose the leaf node N = (y) with the

highest gain in the current tree and replace it with an internal node N ′ = (NL,NR,C). Here, the

constraint C = (xi∗ ≤ t∗) is computed using the exact distribution P |CN instead of P̂N :

(i∗, t∗) = arg max
i∈[d],t∈R

G(i, t;P |CN) . (4)

Again, in the gain function G (defined in Eq. 1), we take Q to be the exact distribution P | CN
instead of P̂N . This results in the new exact leaf node labels:

yL = arg max
y∈Y

Prx∼P|CN [f(x) = y |CN ∧ (xi∗ ≤ t∗))] (5)

yR = arg max
y∈Y

Prx∼P|CN [f(x) = y |CN ∧ (xi∗ > t
∗))].

As before, we iterate k− 1 times, replacing the node with the highest gain G(i∗, t∗;P |CN).

4.1. Binary Features

In this section, we consider classification trees with binary features and binary outcomes. In par-

ticular, let f : X →Y, where X = {0,1}d and Y = {0,1}, and let T ∗ be the exact greedy decision

tree of depth D. In this case, when constructing the exact greedy decision tree T ∗, it suffices to

restrict to t= 0.5 in the optimization problem

i∗, t∗ = arg max
i,t

G(i, t)

used to choose the branch condition xi ≤ t labeling each node N in T ∗. In particular, note that

the gain G(i, t) and the sets F(CN ∧ xi ≤ t) and F(CN ∧ xi > t) are all constant for all t ∈ [0,1).

Thus, it suffices to consider a single choice; we choose t= 0.5. Furthermore, for all t∈ (−∞,0), the

branch xi ≤ 0 is satisfied by none of the x∈X , so Prx∼P [CN ∧xi ≤ t] = 0; similarly, for all t∈ [1,∞),

the branch xi > t is satisfied by none of the x∈X. Therefore, our algorithm ignores these choices.

Thus, it suffices to consider t= 0.5, as claimed. For simplicity, we write G(i) =G(i,0.5).
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Definition 5. We say the exact greedy decision tree T ∗ is ∆-gapped if (i) for each internal

node N , we have G(i∗)≥G(i′) + ∆, where i∗ is the maximizer of G(i), and i′ is the maximizer of

G(i) subject to i 6= i∗, and (ii) for each leaf node N , we have F (y∗)≥ F (y′) + ∆. Here we define

F :Y →R as

F (y) = Prx∼P [f(x) = y |CN ],

where y∗ is the maximizer of F (y), and y′ is the maximizer of G(y) subject to y 6= y∗ (i.e., y′ = 1−y).

Definition 6. For functions f, g :X →Y, we write f ≡ g if and only if f(x) = g(x) for all x∈X .

Theorem 1 (Discrete Features). Let f :X →Y be any function, let T be the estimated greedy

decision tree of depth d+ 1 trained on

ntot =O(∆−22d+3 logd log δ−1),

samples, and assume that the exact greedy decision tree is ∆-gapped. Then, Pr[T ≡ f ]≥ 1− δ.

Proof of Theorem 1 This result follows from Lemmas 2 and 3, given in Appendix A. �

It is well known that a nonparametric function over {0,1}d requires O(2d) degrees of freedom

to express; equivalently, a tree of depth d+ 1 has O(2d) leaves. Theorem 1 demonstrates that our

interpretation recovers any nonparametric function exactly with high probability as the number of

samples grows large.

4.2. General Features

We now consider general features, and show that for any fixed tree size k, our algorithm extracts

a decision tree that is arbitrarily close to the exact decision tree of the same size for sufficiently

large n. The key challenge to establishing this result is that the branches in a greedy decision tree

are estimated by maximizing a non-convex objective function (the gain). As a result, even very

small errors in the estimated objective function (i.e., errors in P̂N) can dramatically change its

maximizer (the chosen leaf node N to split, as well as the constraint given by i∗, t∗). Under mild

technical conditions, we establish that asymptotically, the estimated objective converges uniformly

to the true objective with high probability, and consequently, the maximizer converges as well.

Assumptions. We first make a mild assumption about the distribution P:

Assumption 1. The probability density function p(x) of the distribution P over X is continuous,

bounded (i.e., p(x)≤ pmax), and has bounded domain (i.e., p(x) = 0 for ‖x‖∞ >xmax).

This is a standard assumption since features are almost always bounded in practice. To satisfy this,

we can simply truncate the Gaussian mixture models in our algorithm to X = {x ∈ Rd | ‖x‖∞ ≤

xmax}, for some xmax ∈R.

Our next assumption ensures that the exact tree is well-defined:
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Assumption 2. The maximizers (i∗, t∗) in (4), and yL and yR in (3) are unique.

In other words, there are no nodes where the gain for two different choices of a branch are exactly

tied; such a tie is very unlikely in practice since the gain is real-valued.

Convergence. We now define the notion in which the extracted tree converges to the exact

tree. For simplicity of notation, we additionally assume that we are learning complete trees (i.e.,

the maximum gain is not zero during any iteration) with depth D (i.e., k= 2D−1 leaf nodes).

Definition 7. Let T,T ′ be complete decision trees of depth D. For ε > 0, we say T is an ε

approximation of T ′ if

Prx∼P [T (x) = T ′(x)]≥ 1− ε .

Let T ∗ be the exact tree that is complete with depth D. For any ε, δ > 0, we say T is (ε, δ)-exact if

Pr[T is an ε approximation of T ∗]≥ 1− δ,

where the randomness is taken over the training samples x∼P.

Main Result. We now state our main result:

Theorem 2 (General Features). For any ε, δ > 0, there exists n ∈ N such that the decision

tree extracted using n samples per node is (ε, δ)-exact.

4.3. Proof Overview of Theorem 2

At a high level, the idea behind our proof of Theorem 2 is to show that the internal structure of

T converges to that of T ∗. Intuitively, this holds because as we increase the number of samples

used to estimate T , the parameters (i, t) of each internal node of T and the parameters (y) of each

leaf node of T should converge to the parameters of T ∗. As long as the internal node parameters

converge, then an input x ∈ X should be routed to leaf nodes in T and T ∗ at the same position.

Then, as long as the internal node parameters converge, x should furthermore be assigned the same

label by T and T ∗.

The main challenge is that the internal node parameter t is continuous, so T always has some

error compared to T ∗. Furthemore, errors that occur in early branches of the tree propagate to

lower branches and may be potentially magnified due to the non-convexity of the gain. Thus, to

prove Theorem 2, we have to quantify this error and show that it goes to zero as n goes to infinity.

We quantify this error as the probability that an input is routed to the wrong leaf node in T .

Our main lemma formalizes this notion. We begin by establishing some notation. Consider a

node N∗ in the exact decision tree T ∗. We define the function φ : T ∗ → T to map N∗ to the

node N = φ(N∗) at the corresponding position in the estimated decision tree T estimated using

n samples. Now, given an input x ∈ X , we write x
T∗−→N∗ if x is routed to node N∗ in T ∗, and



15

similarly x
T−→ N if x is routed to node N in T . Finally, we denote the leaves of T ∗ and T by

leaves(T ∗) and leaves(T ), respectively.

Then, we have the following key result:

Lemma 1. Let p(x) be the probability density function for the distribution P, let N∗ ∈ T ∗ and

N = φ(N∗), and let

pN∗(x) = p(x) · I[x T∗−→N∗]

pN(x) = p(x) · I[x T−→N ].

Then, ‖pN −pN∗‖1 converges in probability to 0 (where the randomness is taken over the n samples

used to extract T ), i.e., for any ε, δ > 0, there exists n> 0 such that

‖pN − pN∗‖1 ≤ ε

with probability at least 1− δ.

Intuitively, pN∗ captures the distribution of points that are routed to N∗ in T ∗, and pN captures

the distribution of points that are routed to N in T . Then, this lemma says that the distribution

of points routed to N∗ and N are similar. We prove this lemma in Section B.1.

4.4. Proof of Theorem 2

We now use Lemma 1 to prove Theorem 2. In particular, we must show that the quantity P =

Prx∼P [T (x) 6= T ∗(x)] is bounded by ε with probability at least 1− δ. Throughout the proof, we use

Lemma 1 with parameters
(
ε
K
, δ

2K

)
, i.e., we have ‖pN −pN∗‖1 ≤ ε

K
with probability at least 1− δ

2K
.

By a union bound, this fact holds for every leaf node in T ∗ with probability at least 1− δ
2
.

Then, our proof proceeds in two steps:

1. We show that a leaf node N ∈ T is correctly labeled as long as ε is sufficiently small. More

precisely, let N∗ ∈ leaves(T ∗) such that N∗ = (y∗), and let N = φ(N∗)∈ leaves(T ) such that N = (y);

then, we show that for any δ′ > 0, there exists n ∈ N such that y = y∗ with probability at least

1− δ′ (where the randomness is taken over the n samples used to extract T ).

2. Using the Lemma 1 together with the first step, we show that P ≤ ε with probability at least

1− δ.
Proving y = y∗. Let p(x) be the probability density function for the distribution P, and let

N∗ ∈ leaves(T ∗) such that N∗ = (y∗) and N = φ(N∗) ∈ leaves(T ) such that N = (y). First, we

rewrite the objective (5) in terms of pN∗ . In particular, for each y′ ∈Y, let

p∗y′ = Prx∼P [f(x) = y′ ∧ (x
T∗−→N∗)]

=

∫
I[f(x) = y′] · I[x T∗−→N∗] · p(x)dx.
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Then, we have y∗ = arg maxy′∈Y p
∗
y′ , since the denominator Prx∼P [x

T∗−→N∗] in (5) is constant with

respect to y′. Similarly, we rewrite the objective (3) in terms of pN∗ , letting

py′ =
1

n

n∑
j=1

I[f(x(j)) = y′] · I[x(j) T−→N ]

for each y′ ∈Y, in which case we have y= arg maxy′∈Y py′ .

By Assumption 2, we know that y∗ is the unique maximizer of p∗y, i.e.,

∆ = p∗y∗ − arg max
y′ 6=y∗

p∗y′ > 0.

Therefore, to show that y= y∗, it suffices to show that for each y′ ∈Y, we have

|py′ − p∗y′ | ≤
∆

3
,

since then, for each y′ ∈Y, we have

py∗ − py′ ≥
(
p∗y∗ −

∆

3

)
−
(
p∗y′ +

∆

3

)
≥ ∆

3
> 0,

which implies that y= y∗ since y∗ is the maximizer of py′ .

To show that |py′ − p∗y′ | ≤∆/3, we first define

p̃y′ =

∫
I[f(x) = y′] · I[x T−→N ] · p(x)dx.

Then, we have

|py′ − p∗y′ | ≤ |py′ − p̃y′ |+ |p̃y′ − p∗y′ |.

To bound the first term, let

dy′ = I[f(x) = y′] · I[x T−→N ]

be a Bernoulli random variable, so

d
(j)

y′ = I[f(x(j)) = y′] · I[x(j) T−→N ]

are samples of dy′ for j ∈ [n]. Then, we have p̃y′ = E[dy′ ] and py′ = n−1
∑n

j=1 d
(j)

y′ , so we can apply

Hoeffding’s inequality to get

Pr

[
|py′ − p̃y′ |>

∆

6

]
≤ 2exp

(
−n∆2

18

)
.
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To bound the second term, note that

|p̃y′ − p∗y′ |=
∣∣∣∣∫ I[f(x) = y′] · (I[x T−→N ]− I[x T∗−→N∗]) · p(x)dx

∣∣∣∣
≤
∫
|I[x T−→N ]− I[x T∗−→N∗]| · p(x)dx

= ‖pN − pN∗‖1

≤ ε.

Finally, assume that ε <∆/6; then, taking a union bound over y′ ∈Y, we have that

|py′ − p∗y′ | ≤
∆

3

for all y′ ∈Y with probability at least 1− δ′, where

δ′ = 2 · |Y| · exp

(
−n∆2

18

)
.

In particular, it follows that y= y∗ with probability at least 1− δ′.

Bounding P . First, we separate the contribution of each leaf node to P :

P = Prx∼P [T (x) 6= T ∗(x)]

=
∑

N∗∈leaves(T∗)

Prx∼P [T (x) 6= T ∗(x) and x
T∗−→N∗].

Next, we apply the result from the first step of this proof with parameter δ′ = δ
2K

(where K is

the number of nodes in each T ∗ and T ); then, for any leaf node N∗ ∈ leaves(T ∗), the label assigned

to N∗ equals the label assigned to N with probability at least 1− δ
2K

. Taking a union bound over

the leaf nodes, this fact holds true for all the leaf nodes with probability at least 1− δ
2
. For the

remainder of the proof, we assume that this fact holds.

Consider an input x such that x
T∗−→ N∗; as long as N∗ and φ(N∗) have the same label, and

additionally x
T−→ φ(N∗), then T (x) = T ∗(x). Thus, we have

Prx∼P [T (x) 6= T ∗(x) and x
T∗−→N∗]≤Prx∼P [¬(x

T−→ φ(N∗)) and x
T∗−→N∗].

As a consequence, we have

P ≤
∑

N∗∈leaves(T∗)

Prx∼P [¬(x
T−→ φ(N∗)) and x

T∗−→N∗]

=
∑

N∗∈leaves(T∗)

∫
(1− I[x T−→ φ(N∗)]) · I[x T∗−→N∗] · p(x)dx.

Now, we claim that

(1− I[x T−→ φ(N∗)]) · I[x T∗−→N∗]≤ |I[x T∗−→N∗]− I[x T−→ φ(N∗)]|.
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To see this claim, note that both sides of inequality take values in {0,1}. Furthermore, the right-

hand side equals 0 only if the two indicators are equal. In this case, the left-hand side also equals

0, so the claim follows. Thus, we have

P ≤
∑

N∗∈leaves(T∗)

∫
|I[x T∗−→N∗]− I[x T−→ φ(N∗)]| · p(x)dx

=
∑

N∗∈leaves(T∗)

∫
|I[x T∗−→N∗] · p(x)− I[x T−→ φ(N∗)] · p(x)|dx

=
∑

N∗∈leaves(T∗)

‖pφ(N∗)− pN∗‖1.

By Lemma 1, we have

P ≤
∑

N∗∈leaves(T∗)

ε

K
≤ ε.

Since Lemma 1 holds with probability at least 1− δ
2
, and the first part of this proof holds with

probability at least 1− δ
2
, by a union bound, we have P ≤ ε with probability at least 1− δ, which

completes the proof. �

5. Evaluation

We illustrate a potential use case of our technique for predicting diabetes risk among patients on

a real electronic medical record (EMR) dataset. In 2012, approximately 8.3% of the world’s adult

population had diabetes, which is a leading cause of cardiovascular disease, renal disease, blindness,

and limb amputation (Läll et al. 2017). To make matters worse, an estimated 40% of diabetics

in the US are undiagnosed, placing them at risk for major health complications (Cowie et al.

2009). At the same time, several clinical trials have demonstrated the potential to prevent type

II diabetes among high-risk individuals through lifestyle interventions (Tuomilehto et al. 2011).

Thus, there is significant interest in accurately predicting patients at risk for Type II diabetes in

order to prescribe lifestyle interventions. We learn an effective random forest classifier for this task

(out-of-sample AUROC = 0.84), and extract an interpretation from this model.

First, we find that our interpretation is much more accurate in mimicing the random forest (i.e.,

higher fidelity) compared to vanilla decision trees (Breiman et al. 1984), sparse logistic regression

(Tibshirani 1996), and state-of-the-art rule lists (Yang et al. 2017). Second, we perform a user study

to assess how well individuals can understand the resulting interpretations, e.g., by computing

counterfactuals or identifying relevant patient subpopulations. We find that humans are more

accurate when answering similar questions about our extracted trees than the rule list. However,

the proof is in the pudding and to this end, we interview several domain experts (physicians) using

our interpretation to discover useful insights about the data and model; most importantly, they

find an unexpected causal issue that is important to control for in the chosen prediction task.
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5.1. Preliminaries

We obtained a database of patient electronic medical records from a leading EMR company. Our

dataset contains patients from multiple providers; however, there is significant variation in how

diagnoses and procedures are coded among providers, and so we primarily restrict our analysis

to the largest provider who has 578 unique patients. In our discussions with physicians, we also

include a separate model and corresponding interpretation from the next largest provider (with

402 unique patients), helping us gain insight into coding variations across providers.

For each patient, we constructed 382 features based on their EMR data from the last three years.

These included demographic features (age, gender) and whether the patient had had one of the 200

most frequent diagnoses, been prescribed one of the 150 most frequent medications, and results

from the 30 most frequent lab tests. The outcome variable was whether a patient had a type II

diabetes diagnosis in their most recent visit (not included in the data); the data was pre-processed

by experts to ensure that any relevant lab results and medications (from prior visits) that indicated

a diabetes diagnosis were removed from the data.

Model Test Set AUROC

Decision Trees (Breiman et al. 1984) 0.70
Sparse Logistic Regression (Tibshirani 1996) 0.79
Rule Lists (Yang et al. 2017) 0.80

Random Forest (Breiman 2001) 0.84

Table 1 The performance (AUROC) of different machine learning classifiers for predicting diabetes risk.

We used 70% of our data for training, and the remaining 30% as a test set. As is the case in

many classification tasks, our dataset is very imbalanced: only 11.8% of the patients in the data

have positive labels, i.e., have been diagnosed with diabetes. Thus, to improve precision, we use

the standard trick of up-sampling all instances with positive labels to balance the training set;

however, we maintain the test set in its original form. We use AUROC (area under the ROC curve)

on the test set as our performance metric, and report values for decision trees, sparse logistic

regression, rule lists, and random forests in Table 1. As expected, the random forest outperforms

its more interpretable counterparts. This improvement in predictive accuracy is desirable to better

target patients for lifestyle interventions; in particular, we wish to target as many risky patients

as possible while avoiding burdening patients who are not at risk.

Thus, the provider may wish to deploy the blackbox random forest model. However, it is impor-

tant to understand its behavior and verify its reasoning process with domain experts to ensure

good performance on new patients. To interpret the random forest, we use our algorithm to extract

a decision tree. We first fit a Gaussian mixture model P using the same training data used to
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estimate the random forest. Then, we use our algorithm to extract a decision tree by sampling

1000 new training points per node. The resulting interpretation is shown in Fig 2.

Age > 50

Low risk

no

High cholesterol

yes

Edema

no

Pre-operative medical exam (no findings)

yes

Hypothyroidism medication (levothyroxine)

no

High risk

yes

Chronic lower back pain

no

High risk

yes

Impotence medication (cialis)

no

Smoker

yes

Shoulder disorders

no

High risk

yes

Low risk

no

Routine medical exam (no findings)

yes

High risk

no

Low risk

yes

Low risk

no

High risk

yes

Dermatophytosis of nail

no

High triglycerides medication (lovaza)

yes

Abdominal pain

no

Low risk

yes

Red blood cells in urine

no

Low risk

yes

Arthritis medication (celecoxib)

no

Low risk

yes

High risk

no

Low risk

yes

Low risk

no

High risk

yes

Figure 2 Our algorithm’s extracted interpretation of the blackbox random forest diabetes risk classifier.

For comparison, we train a rule list on the blackbox random forest labels (Xtrain, f(Xtrain)) as

proposed in Lakkaraju et al. (2017); see Fig. 3. We can immediately see that the decision tree

interpretation is significantly richer, providing more insight into the random forest’s reasoning

process. This difference manifests itself in our upcoming fidelity comparison: the decision tree

interpretation has much higher fidelity than the rule list interpretation.

if Age < 41 then Low risk

else if Moderate/severe pain medication (tramadol) then High risk

else if Arthritis medication (etodolac) then Low risk

else if High cholesterol and Smoker then High risk

else if High blood pressure then High risk

else if Age < 53 then Low risk

else if Restless legs syndrome then Low risk

else if not High cholesterol then Low risk

else High risk

Figure 3 Rule list interpretation of the blackbox random forest diabetes classifier.
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Remark 3. Lakkaraju et al. (2017) actually propose training decision sets (Lakkaraju et al.

2016) on the blackbox labels rather than rule lists (Yang et al. 2017). However, the decision set

learning algorithm does not scale to our dataset. In both cases, we use the original implementation

provided by the authors (open-source for rule lists, and through private communication for decision

sets). We found that the decision set learning algorithm generally does not scale well to datasets

with many features; the datasets in the evaluation by Lakkaraju et al. (2016) only have tens of

features, whereas our diabetes risk dataset has hundreds of features. In contrast, the algorithm for

learning rule lists (which are closely related to decision sets) is designed to scale to large datasets.

We note that in our experiments, we find that our algorithm is still roughly 3-4 times faster than

the rule list learning algorithm.

5.2. Fidelity

First, we evaluate fidelity (Definition 4), which measures the AUROC of an interpretation relative

to the predictions of the blackbox random forest. Achieving high fidelity is important, because it

ensures that the insights obtained from the interpretation actually hold for the blackbox model

that we hope to deploy in practice. Fig. 4(a) shows the fidelity of rule lists (Yang et al. 2017),

vanilla decision trees (Breiman et al. 1984), and our extracted tree interpretation. We find that

our extracted trees are significantly better at mimicing the blackbox model, thus providing a much

richer understanding of the random forest to an expert.

Next, we consider how fidelity improves with the size of our interpretation (the number of leaves

in our extracted tree). The size of the rule lists cannot be modified easily, so we compare ourselves

to vanilla decision trees. As can be seen, our extracted tree outperforms the vanilla decision tree

for every size. Moreover, we are able to produce better and better approximations of the blackbox

model as the size of our interpretation is allowed to grow; thus, the expert can easily choose a

tradeoff between fidelity (accuracy of insights) and the bulkiness of the interpretation.
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(a) (b)
Figure 4 Fidelity to the random forest diabetes risk classifier. (a) compares the fidelity of rule lists, a decision

tree, and an extracted tree using our approach. (b) shows fidelity as a function of the size of the tree.
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5.3. Human Accuracy on Interpretations

Aside from fidelity, an equally important element for achieving effective human-in-the-loop analyt-

ics is the ability for humans to accurately reason about the interpretation. Given an interpretation,

an expert may wish to compute counterfactuals or identify relevant subpopulations in order to

better understand the consequences of deploying the blackbox machine learning model. Then, there

are two potential sources of errors in their resulting insights: (i) error from the interpretation’s

approximation of the blackbox model, and (ii) error from the human’s comprehension of the inter-

pretation. We’ve established that our extracted trees produce smaller error in the former category

(higher fidelity), so we now study the latter category (human comprehension).

We perform a user study to evaluate human ability to reason about our proposed interpretation

versus state-of-the-art rule lists. The goal of our approach is to enable experts to better understand

and validate blackbox models; thus, we recruited 46 graduate students with some background in

machine learning or data science to participate in our study. Each participant answered questions

intended to test their understanding of the rule list (shown in Fig. 3) and our extracted tree

interpretation (shown in Fig. 2) of the diabetes risk classifier. We note that the purpose of this

study is only to evaluate how well users can comprehend the given interpretations, and not to

obtain insights or validate the model. Our study participants are not medical experts (we discuss

insights from physicians in the next subsection), and we do not assume any prior medical knowledge

to correctly answer our survey questions.

Consider patients over 50 years old who are otherwise healthy
and are not taking any medications. According to the decision
tree, are these patients at a high risk for diabetes?

• Yes
• No

Consider patients over 53 years old who are otherwise healthy
and are not taking any medications. According to the rule
list, are these patients at a high risk for diabetes?

• Yes
• No

Smoking is known to increase risk of diabetes, so the local
hospital has started a program to help smokers quit smoking.
According to the decision tree, which patient subpopulation
should we target in this program if we want to reduce diabetes
risk?

• Patients over 50 years old with high cholesterol
• Patients over 50 years old with chronic lower back pain
• Patients over 50 years old with high cholesterol, edema,

chronic lower back pain, and who take medication for
hypothyroidism

Smoking is known to increase risk of diabetes, so the local
hospital has started a program to help smokers quit smoking.
According to the rule list, which patient subpopulation should
we target in this program if we want to reduce diabetes risk?

• Patients over 41 years old
• Patients over 41 years old with high cholesterol
• Patients over 41 years old with high cholesterol, and take

medication for arthritis

Figure 5 Examples of questions asked in our user study on the diabetes risk classifier for our extracted decision

tree (left) and for the rule list (right).

We designed five pairs of questions for the two types of interpretations; each pair was similar in

construction and wording, but the exact question was adapted to the structure of the correspond-

ing interpretation (ensuring that there is a single correct answer for each question based on the
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interpretation). Two examples of our questions are shown in Fig. 5; the variants on the left are for

our extracted decision tree, and those on the right are for the rule list. (The remaining questions

can be found in Appendix C.) The first question tests whether the user can determine how the

model would classify a given patient. The second question tests whether the user is able to identify

the subpopulation for which “Smoker” is a relevant feature; we believe that enabling end users to

understand these subpopulation-level effects is a major benefit of global interpretations.

We randomized the order of the interpretations and the corresponding questions. Users were

asked to skip a question if they were unable to determine the answer in 1-2 minutes. We averaged

each user’s accuracy over all 5 questions for each interpretation. The average human accuracy

for rule lists versus our extracted decision tree are shown with standard errors in Fig. 6. Users

responded more accurately when using our extracted tree, despite the fact that our tree was much

larger than the rule list; this effect was statistically significant (p = 0.02 using a paired t-test

clustered at the user level). Furthermore, a majority of users answered each question correctly, so

we believe our questions were fair.
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Figure 6 Average human accuracy on similar questions designed around the rule list and our extracted tree

interpretations; standard errors shown in grey bars. The difference is statistically significant (p = 0.02).

Upon examining the errors made by our users, we found that they had particular difficulty

understanding the conditional structure of the rule list. For example, based on Fig. 3, if a patient is

taking arthritis medication, then only the first three rules are relevant (the else-if structure ensures

that all remaining rules do not trigger). However, this proved challenging for users, and many

continued to apply rules that were deeper down the rule list. On one such question, users answered

correctly only 65% of the time using the rule list; in contrast, users were able to visualize which

constraints triggered more easily in the decision tree, and correctly answered a similar question

91% of the time. This finding mirrors previous work showing that reasoning about long sequences

of if-then-else rules can be difficult for humans (Lakkaraju et al. 2016). We note that our study is
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limited to a single dataset and a relatively small sample size (graduate students with some machine

learning background are a highly specialized population); however, we believe it gives somewhat

compelling evidence that our extracted trees are more or at least equally interpretable as rule lists.

5.4. Case Study on Physicians

Next, we interviewed three physicians about the proposed random forest diabetes risk classifier. We

informed them of the goal (targeting interventions), our data curation and feature construction.

They originally found this approach reasonable. We then presented them with the interpretation

(see Fig. 2), upon which they made several observations. We also trained a separate random forest

classifier and extracted a corresponding interpretation for the next largest provider (see Fig. 7);

these results were useful in our discussions to understand variations across providers.

Endogeneity of diagnoses. One notable feature of our interpretation in Fig. 2 is the subtree

rooted at the node labeled “Dermatophytosis of nail”. This subtree considers the patient subpopu-

lation that is over 50, has high cholesterol, and has not had a pre-operative medical exam. Within

this subpopulation, the default classification if the patient has no additional diagnoses is “high

risk”. However, if the patient has dermatophytosis of nail, abdominal pain, red blood cells in urine,

and/or is taking arthritis medication, then the decision tree classifies the patient as “low risk”. Our

physicians found this effect surprising since these diagnoses have no known negative relationship

to diabetes risk; if anything, dermatophytosis is more likely to occur in diabetic patients (Winston

and Miller 2006), and so one might expect that patients with that diagnosis may have a somewhat

higher risk of a diabetes diagnosis (rather than vice-versa). The physicians argued that, in general,

additional diagnoses indicate poorer health and therefore higher risk of conditions such as diabetes;

however, our extracted tree was predicting the opposite result within this patient subpopulation.

After this initial feedback, we checked that this effect is not simply an artifact of the extracted

tree, but is indeed present (and quite strong) in our data. One may also be concerned that this

effect may be specific to this provider or a chance finding on a particular patient subpopulation.

In contrast, we found that this effect actually occurs among the other providers in our data as

well. For example, it also occurs in the subtree rooted at “Chest pain” for the next largest provider

(see Fig. 7). In this case, the patient subpopulation is over 48, has high blood pressure, and does

not smoke (i.e., similarly high risk as the patient subpopulation considered earlier). Again, their

default classification is “high risk” if they have no other diagnoses; however, if the patient has

chest pain, muscle pain and inflammation, and/or takes anti-depressant medication, then they are

classified as “low risk”. Our experts found that this trend was highly similar to that we found with

the original provider, and thus suggested that some systematic confounder was at play.
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Age > 48

High cholesterol (272.2)

no

High blood pressure

yes

Impaired fasting glucose

no

Age > 43

yes

...

no

High risk

yes

High risk

no

Low risk

yes

...

no

Nicotine dependence

yes

Chest pain

no

...

yes

Muscle pain and inflammation

no

Low risk

yes

Antidepressant medication (Duloxetine)

no

Low risk

yes

High risk

no

Low risk

yes

Figure 7 Partial view of the extracted tree interpretation of the blackbox random forest diabetes classifier for

the second largest provider. Ellipses represent subtrees that are not shown in the figure.

After some thought, the physicians suggested a plausible explanation: patients with more diag-

noses are also likely patients who frequently visit their healthcare provider. The patient subpop-

ulation we are considering (i.e., over 50 years old with high cholesterol) already has some initial

risk factors for diabetes; if they frequently visit their provider, their physician would have likely

recommended pre-diabetic interventions that reduced the patient’s risk for a diabetes diagnosis.

On the other hand, patients who have not recently visited their provider may not have realized

that they are at high risk for diabetes, and may not have been recommended lifestyle interventions.

Thus, having additional diagnoses (even those that are unrelated to diabetes) may be correlated

with lower diabetes risk since those patients receive greater attention and more interventions from

their healthcare provider.

We investigated this hypothesis by looking at the fraction of patients with a positive label for

diabetes as a function of the number of times they have visited their provider in the last year.

We conditioned on the patient subpopulation that is over 50 years old and has high cholesterol to

capture the fact that these patients already have some initial risk factors. Since we decided on this

particular patient subpopulation based on results from the largest provider, we avoid overfitting to

those results by only considering patients from the remaining providers in our data (9370 unique

patients from 375 providers). The results are shown in Fig. 8.

As the physicians suspected, we find a surprising V-shaped effect: while diabetes risk typically

increases with the number of visits (since the patient is likely to be in poorer health), the risk

is actually higher for patients with no provider visits in the last year compared to patients with

a single visit. Thus, diagnoses appear to be endogenous explanatory variables that encode some
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Figure 8 The fraction of patients diagnosed with diabetes (with standard errors) as a function of the number

of visits to the provider in the last year, conditioned on being over 50 years old and having high cholesterol.

(unobservable) physician effort at reducing a patient’s diabetes risk. If we were to deploy the current

predictive model to dictate which patients should receive interventions, a negative consequence

may ensue. In particular, the model may recommend discontinuing interventions for some patients

(e.g., those who are over 50, have high cholesterol, and are taking arthritis medication) because

they have been classified as “low risk”; yet, these patients are only low risk in our data because they

have historically received those interventions (but this was unobserved by our predictive model).

Our finding suggests that our interpretation was valuable for domain experts to form and test

hypotheses about unexpected defects in the blackbox classifier. It is important to detect and

understand such issues before deploying a model, especially in domains like healthcare. Controlling

for this endogeneity to build a more reliable predictive model is beyond the scope of our paper.

We note that feature influence scores (Friedman 2001) are insufficient to tease out such an

effect since they do not examine subpopulations, e.g., the effect we described only applies to the

subpopulation of patients that are at least 50 and have high cholesterol. As an example, the

correlation of “Abdominal pain” with diabetes in the overall population is 8.1× 10−3; however,

within the subpopulation we consider, the correlation is −9.8× 10−2. In fact, none of the features

in our subtree appear in the top 40 relative influence scores for the random forest.

Non-monotone dependence on age. Our physicians also found it interesting that age appears

twice in the extracted decision tree for the second largest provider (Figure 7). They reasoned that

younger patients are typically at lower risk for diabetes; however, conditioned on being less than

48 years old and having high cholesterol, the classifier predicts higher risk for younger patients.

While we cannot be certain of the cause, they brainstormed a number of possible explanations.

For example, a diagnosis of high cholesterol in younger patients is abnormal, and therefore it may

suggest a much riskier disease trajectory for the patient. Alternatively, physicians are more likely

to urge older patients with high cholesterol to take preventative measures to reduce diabetes risk

(as prescribed by guidelines), and may not exert as much effort on younger patients.
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We note that this structure demonstrates how our extracted decision tree can capture non-

monotone dependencies on continuous features such as age. In contrast, non-monotone dependen-

cies cannot be captured by feature influence scores. Rule lists can also capture such a dependence,

but their restricted structure makes it more difficult to understand the effect ,e.g., to reason about

the relationship between the first and sixth rules in the rule list (see Fig. 3), one has to reason

about four intermediate rules, which proved to be a difficult task for users in our user study (§5.3).

Variations across providers. Our physicians also remarked on another interesting feature that

differed between the two providers. “Impaired fasting glucose” (which is a type of pre-diabetes) is a

very predictive feature for the second provider, but not for the first provider. After examining our

data, we found that this was because 10% of patients were diagnosed with impaired fasting glucose

for the second provider, but only 1% of patients had this diagnosis for the first provider. Thus, it

may be the case that the second provider was more diligent about screening for pre-diabetes, or

recording that information in the EMR. Understanding such differences among patient populations

for different providers can aid data scientists in adapting existing models to new providers.

6. Discussion

Many academic papers (Doshi-Velez and Kim 2017) as well as popular media (O’Neil 2016) have

claimed that interpretability is an important and necessary feature for predictive models deployed

in practice. However, we wanted to gain an understanding of where interpretability fits (if at all) into

the workflow of industry experts at large. Thus, we interviewed 17 industry experts from a variety

of sectors (including healthcare, finance, retail, nonprofit, and consulting), who either currently

work with or are planning on working with outputs from predictive algorithms. We now discuss

their insights on the importance of interpretability, its role in their workflow, and the potential

value of our proposed approach. We begin with situations where our approach is not applicable

(interpretability is not important, or the application demands a local interpretation), and then

discuss situations where our approach is applicable (global interpretation can be valuable).

No Interpretability. First, there was a consensus that interpretability is not important in “low

stakes” settings such as online product recommendations (e.g., on Amazon or Netflix) or marketing

campaigns. This is because poor decisions are not considered very costly in these applications.

Furthermore, these firms liberally use A/B testing to ensure that their deployed models are indeed

profitable to the company (thus avoiding causal issues), and A/B testing has a quick turnaround

time enabling them to correct poor decisions almost immediately.

Second, interpretability was not considered useful in settings where decision-makers had limited

expertise about the prediction task. We spoke to decision-makers at nonprofits who are interested

in replacing costly survey-based methods with machine learning methods that produce reasonable
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estimates with cheap or public data. For example, one expert described using publicly-reported

government indicators to predict regions with large numbers of out-of-school girls, while another

described recent work by Jean et al. (2016) using satellite imagery to predict regions with the most

poverty. This information is used to assign interventions to regions with the highest need. However,

the decision-makers at these nonprofits had limited prior knowledge of how one might choose these

regions, and as a result, did not feel that they could assess if the model was producing erroneous

predictions by examining an interpretation. In other words, interpretations are more valuable when

the decision-maker has regularly been making similar predictions as the algorithm, and thus, has

some knowledge of what reasonable predictions should look like.

Local Interpretability. Several experts we interviewed thought that local per-prediction inter-

pretations (e.g., Ribeiro et al. 2016) could be important for incorporating auxiliary information.

One dermatologist referred to recent work by Esteva et al. (2017), which uses blackbox deep learn-

ing on images of skin lesions to predict whether a cancer is malignant or benign. Such methods

are hard to combine with auxiliary information that is available only to the physician and not

the algorithm. For instance, a dermatologist may look for similar skin patterns on other parts of

the patient’s skin, whose presence may signal a benign rather than malignant condition. In this

case, an interpretation of why the algorithm thinks the cancer is benign/malignant may enable the

dermatologist to better combine his/her auxiliary information with the algorithm’s reasoning.

Another concern was that there are occasionally errors in the data inputs for the predictive

model. For instance, two physicians noted that a predictive model may incorrectly produce warnings

for patients based on vital signs from a sensor that had been accidentally knocked off. Similarly,

experts from the financial industry noted examples where a model may recommend underwriting

risk for an account that is already frozen (unbeknownst to the algorithm) or dramatically change its

predictions upon observing that a store has lost 95% of its sales in one day (when any human would

recognize that this was simply a typo). These experts believe that per-prediction interpretations

can help the decision-maker easily identify such errors.

Global Interpretability. The majority of the experts we interviewed agreed that a global

approximation of the blackbox model (our contribution) would be valuable in their workflow. First,

aligned with the findings of behavioral studies by Yeomans et al. (2016), they said upper-level

management is much more likely to trust and approve a predictive model if they can understand

how it produces its predictions. Similarly, Ferreira et al. (2015) note that the use of an interpretable

predictive pricing model helped ensure a higher likelihood of adoption by Rue La La management

and merchants; in our interviews, experts believed that similar benefits of trust and adoption can

be realized with an approximate global interpretation as well.
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Experts also believe that global interpretations can aid in diagnosing errors during the develop-

ment of the model. We spoke to two pricing experts who seek to predict customers’ willingness-

to-pay, which is never actually observed in the data; rather, they use a variety of proxies (e.g.,

demand for ancillary products or price shocks) to build their models. In these cases, they believe an

interpretation can help them understand issues with their training data or how they constructed

their proxy outcomes. Physicians are also concerned about biases in training data with respect to

shifts in patient populations (e.g., the model is trained largely on Caucasians, but is intended to

be deployed on Pacific Islanders), and believed interpretations may help them better understand

whether the model may be appropriate or not.

Causal issues such as confounders (e.g., our case study) as well as “features from the future”

were also raised. As an example, one data scientist at a food delivery startup told us that s/he

had achieved excellent out-of-sample accuracy in predicting delays, but the deployed model did

not perform well in the A/B test. After several iterations, the data scientist discovered that one of

the features used in the model was actually measured in the future (after delivery) but the data

was encoded in a feature that was intended to be measured before delivery. As a result, the model

utilized information that did not exist yet, and performed well on observational data, but not in

the real world. A physician mentioned a similar story, where an early warning system produced

by machine learning experts had achieved promising performance on a test set, but failed upon

deployment because it inadvertently relied on information from the future (since many timestamps

in the electronic medical record are unreliably recorded). Both agreed that a global interpretation

of the model would have helped diagnose these issues at a much earlier stage, since the futuristic

features would have appeared much more predictive than the expert would have expected.

Transparency. When there is significant legal accountability, experts strongly prefer transpar-

ent predictive models over blackbox models, even at the cost of accuracy. These include finan-

cial settings (e.g., credit scoring) as well as healthcare settings (e.g., patient diagnosis), where

firms/hospitals are answerable to legal authorities as to why each decision was made; consequently,

they do not wish to rely on a blackbox model. In this case, they expressed interest in directly using

our extracted decision tree (i.e., our interpretation) and discarding the blackbox model. Thus, our

approach can also be viewed as a way to train more accurate decision trees.

7. Conclusion

We propose a novel approach for interpreting complex, blackbox machine learning models by

extracting decision trees that effectively summarize their reasoning process. The key ingredient of

our algorithm is the use of active learning, which we show can produce richer and more accurate

interpretations than several baselines. We prove that our extracted decision tree converges to the
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exact decision tree, implying that we avoid overfitting. We evaluate our algorithm on a real elec-

tronic medical record dataset to demonstrate that it produces more accurate interpretations that

are simultaneously easier for humans to comprehend. We then perform a case study on physicians

regarding our diabetes risk prediction model, and describe a number of useful insights they derived

using our interpretation, underscoring the value of interpretability. Finally, we interview a number

of industry experts to better understand the role of interpretability in their workflow, and the

potential value of our proposed approach in a variety of settings.

One important direction for future work is testing the operational value of interpretability in a

field experiment. There has also been much discussion about the tension between offering experts

too much information (which may result in cognitive overload) and too little (which may result in

the expert being unable to factor in their domain knowledge effectively); this begs the question of

how to optimize the design of interpretations to best facilitate overall improved decision-making.
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Appendix

A. Proofs for Theorem 1

A.1. Main Lemmas

Lemma 2. Let T ∗ be the exact greedy decision of depth d. Then, we have T ∗ ≡ f .

Proof of Lemma 2 We claim that if node N in T ∗ branches on feature i ∈ [d] (i.e., it is labeled with

predict xi ≤ t), then none of the children of N branch on feature i. Without loss of generality, consider a

child N ′ in the left branch of N . Then, since CN′ = ...∧ xi ≤ 0.5∧ ..., so for all x ∈F(CN′), we have xi = 0.

Thus, we have Prx∼P [CN ∧xi > 0.5] = 0, so our algorithm will not branch on feature i, as claimed.

Next, consider any path from the root of T ∗ to a leaf node N ; we claim that T ∗(x) = f(x) for all x∈F(CN).

First, consider the case where N is at depth less than d+1. The only reason our algorithm would not branch

at N before reaching the maximum depth is that classification accuracy is perfect at N . Thus, in this case,

our current claim follows. Next, consider the case where N is at depth d. Let N0 =NT∗ ,N1, ...,Nd,Nd+1 =N

be the sequence of nodes along the path from the root NT∗ of T ∗ to leaf N . By our previous claim, each

of the nodes N0, ...,Nd must branch on a different feature. Since there are exactly d features, each feature

occurs exactly once in CN . Without loss of generality, assume that each node Ni+1 is the left branch of Ni;

then, we have

CN = x1 ≤ 0.5∧ ...∧xd ≤ 0.5.

Note that there is only a single point that satisfies CN , i.e., F(CN) = {xN} where xN =
[
0 ... 0

]T
. Thus, the

label on N must be f(xN), and T ∗(xN) = f(xN). It follows that

Pr[T ∗(x) = f(x)] =
∑

N∈leaves(T∗)

Pr[T ∗(x) = f(x) |CN ] ·Pr[CN ]

=
∑

N∈leaves(T∗)

Pr[CN ]

= 1,

as claimed. �

Lemma 3. Let f :X →Y be any function, let T ∗ be the exact greedy decision of depth d+ 1, and let T̂ be

the estimated greedy decision tree of depth d+ 1, and assume that T ∗ is ∆-gapped. Then, for

ntot =O(∆−22d+3log d log δ−1),

we have Pr[T ∗ = T̂ ]≥ 1− δ (where the randomness is taken over the samples x∼P used to extract T̂ ).

Proof of Lemma 3 First, note that by Lemma 4, for a given node N in the estimated greedy decision

tree, we have

Pr

[
∀i∈ [d].|Ĝ(i)−G(i)|> ∆

2

]
≤ δ
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if we take n samples. This bound implies that for all i 6= i∗ (where i∗ = arg maxi∈[d]G(i) is the maximizer of

the true gain), we have

Ĝ(i∗)≥G(i∗)− ∆

2

≥G(i) +
∆

2

≥ Ĝ(i),

where the second step follows from the definition of ∆. Thus, arg maxi∈[d] Ĝ(i) = i∗, i.e., the index i chosen in

the estimated greedy decision tree equals the one chosen in the exact greedy decision tree (assuming all the

parents of N are chosen correctly). Taking a union bound over all 2d internal nodes in the tree, the internal

nodes of T ∗ and T̂ are identical with probability at least 1− δ.

Next, we compute the total number of samples needed. First, note that for each i ∈ [d], there are four

probabilities that must be estimated in G(i), for a total of 4nd samples needed per node. Finally, since there

are 2d internal nodes, the total number of samples needed to estimate the internal nodes of T ∗ is 4nd2d,

which is

ntot =O(∆−22d+3log d log δ−1).

The number of samples required to choose the labels yN assigned to each leaf node N is similar (and in

fact simpler), since there are 2d leaf nodes as well. Therefore, the claim follows. �

A.2. Properties of the Gain

Lemma 4. Suppose that the gain G(i) is estimated using

n=

(
24

∆

)2

d log
24d

δ

samples x(1), ..., x(n) for each probability. Then, we have

Pr

[
|Ĝ(i)−G(i)|> ∆

2

]
≤ δ

for all i∈ [d], where Ĝ(i) is the estimated gain.

Proof of Lemma 4 Recall that

G(i) =−H(f,CN ∧xi ≤ 0.5)−H(f,CN ∧xi > 0.5) +H(f,CN),

where

H(f,C) =

(
1−

∑
y∈Y

Prx∼P [f(x) = y |C]2

)
·Prx∼P [C].

Note that the last term of G(i) is constant with respect to i, so it can be dropped without affecting the

optimal value i∗ = arg maxi∈[d]G(i), as can the term

Prx∼P [CN ∧xi ≤ 0.5] + Prx∼P [CN ∧xi > 0.5] = Prx∼P [CN ]
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that comes from the first terms of H(f,CN ∧xi ≤ 0.5) and H(f,CN ∧xi > 0.5). Then, we have

G(i) =
∑
y∈Y

Prx∼P [f(x) = y |CN ∧xi ≤ 0.5]2 ·Prx∼P [CN ∧xi ≤ 0.5]

+
∑
y∈Y

Prx∼P [f(x) = y |CN ∧xi > 0.5]2 ·Prx∼P [CN ∧xi > 0.5].

By Lemma 6, letting

E∗ = Prx∼P [f(x) = y |CN ∧xi ≤ 0.5]2 ·Prx∼P [CN ∧xi ≤ 0.5]

and Ê be the estimate of E∗, and letting ε= ∆
24

, we have

Pr

[
|Ê−E∗|> ∆

8

]
≤ 6e−n(∆/24)2 .

Similar bounds hold for the other three terms of G(i); together, we have

Pr

[
|Ĝ(i)−G(i)|> ∆

2

]
≤ 24e−n(∆/24)2 .

Finally, taking a union bound over i∈ [d], we have

Pr

[
∀i∈ [d].|Ĝ(i)−G(i)|> ∆

2

]
≤ 24de−n(∆/24)2 =

δ

2d
,

as claimed. �

A.3. Technical Lemmas

Lemma 5. Let C :X →{0,1} be any logical predicate, let

E∗ = Prx∼P [C] = Ex∼P [I[x∈F(C)]]

be the probability that C holds, where I is the indicator function, and

Ên =
1

n

n∑
i=1

I[x(i) ∈F(C)]

be an estimate of E∗ using n samples x(1), ..., x(n) ∼P. Then, we have

Pr[|Ê−E|> ε]≤ 2e−2nε2 ,

where the probability is taken over the randomness in the samples x(1), ..., x(n).

Proof of Lemma 5 The lemma follows by applying Hoeffding’s inequality to the random variable z =

I[x∈F(C)]. �

Lemma 6. Let C1, ...,Ck : X → {0,1} be logical predicates, and E∗1 , ...,E
∗
k and Ê1, ..., Êk as in Lemma 5.

Then, we have

Pr[|Ê1 · ... · Êk−E∗1 · ... ·E∗k >kε]≤ 2ke−2nε2
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Proof of Lemma 6 First, by applying Lemma 5 together with a union bound, we have

Pr[|Ê1−E∗1 | ≤ ε∧ ...∧ Êk−E∗k ≤ ε]≤ 2ke−2nε2 .

Next, given that |Êi−E∗i | ≤ ε for each i∈ [d], we prove that

|Ê1...Êi−E∗1 ...E∗i > i| ≤ iε,

for each i∈ [d], by induction on i. The base case i= 1 follows by assumption. Then, we have

|Ê1...Êi−E∗1 ...E∗i |

= |Ê1...Êi−E∗1 ...E∗i−1Êi +E∗1 ...E
∗
i−1Êi−E∗1 ...E∗i |

= |(Ê1...Êi−1−E∗1 ...E∗i−1) · Êi +E∗1 ...E
∗
i−1 · (Êi−E∗i )|

≤ |Ê1...Êi−1−E∗1 ...E∗i−1| · |Êi|+ |E∗1 ...E∗i−1| · |Êi−E∗i |

≤ |Ê1...Êi−1−E∗1 ...E∗i−1|+ |Êi−E∗i |

≤ (i− 1)ε+ ε

= iε,

where the second-to-last step follows since E∗i ∈ [0,1] and Êi ∈ [0,1] for each i∈ [d]. Therefore, the inductive

step holds, so the claim follows. �

B. Proofs for Theorem 2

Appendix B.1 gives the proof of Lemma 1. Appendices B.2 and B.3 provide proofs of the technical lemmas

required for Theorem 2 and Lemma 1.

B.1. Proof of Main Lemma

The key idea behind proving Lemma 1 is to use induction on the structure of the tree. More precisely, it is

clear that Lemma 1 holds for the root node NT∗ of T ∗, since every input is routed to the root, i.e.,

I[x T∗−→NT∗ ] = I[x T−→ φ(NT∗)] = 1

for all x∈X . Then, it suffices to show that if Lemma 1 holds for the parent of a node N∗ ∈ T ∗, then it holds

for N∗ as well.

More precisely, let M∗ be the parent of N∗, and let M = φ(M∗) be the parent of N = φ(N∗). Our goal is

to prove that, assuming

‖pM − pM∗‖1
p−→ 0,

then

‖pN − pN∗‖1
p−→ 0

as well (note that we use
p−→ to denote convergence in probability).

For simplicity, we prove the one-dimensional case, i.e., X =R. Proving the general case is a straightforward

extension of our proof, but requires extra bookkeeping that obscures the key ideas. In particular, let N∗ ∈ T ∗
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have form N∗ = (i∗, t∗), and let N = φ(N∗) ∈ T have form N = (i, t). When d= 1, we know that i= i∗ = 1,

so we only have to prove that t converges to t∗. Proving that i converges to i∗ is straightforward since there

are only finitely many choices for i. With this restriction, we can assume that internal nodes have only a

single parameter, i.e., N∗ = (t∗) where t∗ ∈R, and N = φ(N∗) = (t) where t∈R.

We begin our proof by expressing pN in terms of pM . We assume without loss of generality that N is the

left child of M . Then, note that

I[x T−→N ] = I[x T−→M ] · I[x≤ t],

where M = (t), so we have

pN(x) = pM(x) · I[x≤ t].

Now, our proof proceeds in two steps:

1. First, we show assuming ‖pM − pM∗‖1
p−→ 0, then t

p−→ t∗.

2. Second, we show that assuming t
p−→ t∗, then ‖pN − pN∗‖1

p−→ 0.

Step 1: Proving t
p−→ t∗. First, we show that ‖pM − pM∗‖1

p−→ 0 implies

‖G−G∗‖∞
p−→ 0,

where

G∗(s) =G(i, s;P |CM∗)

G(s) =G(i, s;PM)

are the gain functions for T ∗ and T , respectively, where G(i, s;Q) is defined in (1); as noted above, we have

assumed i= 1 is a constant to simplify our exposition. Proving this step depends on the gain function being

used to train the decision tree; we show that it holds for the gain function based on the Gini impurity in

Lemma 7 (proof in Appendix B.2).

Next, we show that as long as ‖G−G∗‖∞ is sufficiently small, then the difference between their corre-

sponding maximizers

t∗ = arg max
s

G∗(s)

t= arg max
s

G(s)

is small as well, i.e., t
p−→ t∗.

By Assumption 2, we can prove the existence of a gap, which intuitively is an interval around t∗ outside

of which the G∗(s) is “sufficiently smaller” than G∗(t∗). More precisely:

Definition 8. We say that a function g : R → R is (ε, δ)-gapped if it has a unique maximizer s∗ =

arg maxs∈R g(s), and for every s∈R such that |s− s∗|> ε, we have g(s∗)> g(s) + δ.

We show that as long as G∗ is continuous and has bounded support, then for any ε′ > 0, there exists δ′ > 0

such that G∗ is (ε′, δ′)-gapped; in Lemma 9 (proof in Appendix B.3), we show that the gain function G∗
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based on the Gini impurity satisfies these technical assumptions. Then, let smax bound the support of G∗,

i.e., G∗(s) = 0 if |s|> smax. Let ε′ > 0 be arbitrary, and let

Aε′ = {s∈R | |s| ≤ smax and |s− s∗| ≥ ε′}.

Note that Aε′ is a compact set, so G∗ achieves its maximum on Aε′ , i.e.,

t∗ε′ = arg max
s∈Aε′

G∗(s).

Then, G∗ is (ε′, δ′)-gapped, where

δ′ =
G∗(t∗)−G∗(t∗ε′)

2
> 0.

Note that we divide by 2 since the inequality in Definition 8 is strict.

Now, we show that having a gap implies t
p−→ t∗. In particular, suppose that ‖G∗ −G‖∞ ≤ δ′

2
. Then, we

have

G∗(t∗)−G∗(t)≤
(
G(t∗) +

δ′

2

)
−
(
G(t)− δ′

2

)
≤G(t∗)−G(t) + δ′

≤ δ′,

where the last step follows since t is the maximizer of G. In particular, we have shown that |G∗(t∗)−G∗(t)| ≤
δ′, so since G∗ is (ε′, δ′)-gapped, it follows that |t− t∗| ≤ ε′. Since ‖G∗−G‖∞

p−→ 0, it follows that t
p−→ t∗.

Step 2: Proving ‖pN − pN∗‖1
p−→ 0. Note that

‖pN − pN∗‖1 =

∫
|pN(x)− pN∗(x)|dx

=

∫
|pM(x) · I[x≤ t]− pM∗(x) · I[x≤ t∗]|dx

=

∫
|pM(x) · I[x≤ t]− (pM(x) + pM∗(x)− pM(x)) · I[x≤ t∗]|dx

≤
∫
pM(x) · |I[x≤ t]− I[x≤ t∗]|dx+

∫
|pM(x)− pM∗(x)| · I[x≤ t∗]dx.

Assume without loss of generality that t≤ t∗. Then, for the first integral, note that the integrand equals 0

for x 6∈ [t, t∗] and equals 1 for x∈ [t, t∗]. Thus,∫
pM(x) · |I[x≤ t]− I[x≤ t∗]|dx=

∫
pM(x) · I[t≤ x≤ t∗]dx

=

∫ t∗

t

pM(x)dx

≤ |t− t∗| · pmax,

where the last step follows by Assumption 1, which says that p(x)≤ pmax for all x∈R.

Next, for the second integral, note that∫
|pM(x)− pM∗(x)| · I[x≤ t∗]dx≤ ‖pM − pM∗‖1.

Together, we have

‖pN − pN∗‖1 ≤ ‖pM − pM∗‖1 + |t− t∗| · pmax.

Since the left-hand side converges in probability to 0, so does the right-hand side, as claimed. �
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B.2. Proof of Convergence of the Gain Function

In this section, we prove that the gain function G converges uniformly to G∗ as n→∞. To simplify notation,

we use slightly different notation for the Gini impurity H compared to the definition in (1).

Lemma 7. Let

G∗(t) =−H∗(f,CN∗ ∧ (x≤ t))−H∗(f,CN∗ ∧ (x> t)) +H∗(f,CN∗)

H∗(f,C) =

(
1−

∑
y∈Y

(
Prx∼P [f(x) = y ∧C]

Prx∼P [C]

)2
)
·Prx∼P [C]

be the gain function based on the Gini impurity for the exact decision tree, and let

G(t) =−H(f,CN ∧ (x≤ t))−H(f,CN ∧ (x> t)) +H(f,CN)

H(f,C) =

1−
∑
y∈Y

(
1
n

∑n

j=1 I[f(x(j)) = y ∧x(j) ∈F(C)]
1
n

∑n

j=1 I[x(j) ∈F(C)]

)2
 · 1

n

n∑
j=1

I[x(j) ∈F(C)]

be the corresponding gain function for the estimated decision tree.

If ‖pN − pN∗‖1
p−→ 0, where

pN∗(x) = p(x) · I[x T∗−→N∗]

pN(x) = p(x) · I[x T−→N ],

then we have ‖G−G∗‖∞
p−→ 0.

Proof. First, note that

‖G−G∗‖∞ ≤ sup
t∈R
|H∗(f,CN∗ ∧ (x≤ t))−H(f,CN ∧ (x≤ t))|

+ sup
t∈R
|H∗(f,CN∗ ∧ (x> t))−H(f,CN ∧ (x> t))|

+ sup
t∈R
|H∗(f,CN∗)−H(f,CN)|.

We prove that the first term converges in probability to 0 as n→∞; the remaining two terms can be bounded

using the same argument. In particular, let

H∗(t) =H∗(f,CN∗ ∧ (x≤ t))

H(t) =H(f,CN ∧ (x≤ t)),

so our goal is to show that ‖H −H∗‖∞
p−→ 0. To simplify our expressions, define

g∗(t) = Prx∼P [CN∗ ∧ (x≤ t)]

h∗y(t) = Prx∼P [f(x) = y ∧CN∗ ∧ (x≤ t)]

g(t) =
1

n

n∑
j=1

I[x(j) ∈F(CN ∧ (x≤ t))]

hy(t) =
1

n

n∑
j=1

I[f(x(j)) = y ∧x(j) ∈F(CN)∧ (x(j) ≤ t)],
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A useful fact is that

0≤ h∗y(t)≤ g∗(t)≤ 1

0≤ hy(t)≤ g(t)≤ 1

for all t∈R and all y ∈Y (but assuming the random samples x(j) are fixed). Now, we have

H∗(t) =

(
1−

∑
y∈Y

(
h∗y(t)

g∗(t)

)2
)
· g∗(t)

= g∗(t)−
∑
y∈Y

h∗y(t)
2

g∗(t)
,

and similarly

H(t) = g(t)−
∑
y∈Y

hy(t)
2

g(t)
.

Then, we have

‖H −H∗‖∞ ≤ sup
t∈R
|g(t)− g∗(t)|+

∑
y∈Y

sup
t∈R

∣∣∣∣h∗y(t)2

g∗(t)
− hy(t)

2

g(t)

∣∣∣∣ .
We show that for a fixed y ∈Y, we have

sup
t∈R

∣∣∣∣h∗y(t)2

g∗(t)
− hy(t)

2

g(t)

∣∣∣∣ p−→ 0. (6)

Bounding the first term of ‖H −H∗‖∞ follows similarly; together, these limits imply that ‖H −H∗‖∞
p−→ 0

as well. We break the remainder of the proof into two steps:

1. First, we prove that ‖g− g∗‖∞
p−→ 0 and ‖hy −h∗y‖∞

p−→ 0.

2. Second, we use the first part to show that (6) holds.

Step 1. We prove that ‖hy −h∗y‖∞
p−→→ 0; the claim ‖g− g∗‖∞

p−→ 0 follows similarly. First, note that

h∗y(t) =

∫
I[f(x) = y] · I[x N∗−−→ T ∗] · I[x≤ t] · p(x)dx

=

∫
I[f(x) = y] · I[x≤ t] · pN∗(x)dx,

and define

h̃y(t) =

∫
I[f(x) = y] · I[x≤ t] · pN(x)dx.

Then, note that

‖hy −h∗y‖∞ ≤ ‖hy − h̃y‖∞+ ‖h̃y −h∗y‖∞.

Bounding the first term, which represents the estimation error, is somewhat involved, so we relegate the

proof to another lemma. In particular, taking g= hy and g∗ = h̃y in Lemma 8, it follows that ‖hy− h̃y‖∞
p−→ 0.

To bound the second term, note that

‖h̃y −h∗y‖∞ = sup
t∈R

∣∣∣∣∫ I[f(x) = y] · I[x≤ t] · (pN(x)− pN∗(x))dx

∣∣∣∣
≤ sup

t∈R

∫
|pN(x)− pN∗(x)|dx

= ‖pN − pN∗‖1
p−→ 0,

where the last step follows by our assumption.
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Step 2. Let ε, δ > 0 be arbitrary. We need to show that∣∣∣∣h∗y(t)2

g∗(t)
− hy(t)

2

g(t)

∣∣∣∣≤ ε
for every t∈R with probability at least 1− δ. By the previous step, we can take

‖g− g∗‖∞ ≤
ε

8

‖hy −h∗y‖∞ ≤
ε2

16

each with probability at least 1− δ
2
, so by a union bound, both these inequalities hold with probability at

least 1− δ.
We consider two cases. First, suppose that g∗(t)≤ ε

4
, in which case

g(t)≤ g∗(t) +
ε

8
≤ ε

2
.

Then, since h∗y(t)≤ g∗(t) and hy(t)≤ g(t), we have∣∣∣∣h∗y(t)2

g∗(t)
− hy(t)

2

g(t)

∣∣∣∣≤ ∣∣∣∣h∗y(t)2

g∗(t)

∣∣∣∣+ ∣∣∣∣hy(t)2

g(t)

∣∣∣∣
≤ |g∗(t)|+ |g(t)|

≤ ε.

One detail is that when g∗(t) = 0, then H∗(t) is not well-defined. Defining H∗(t) = 0 in this case is standard

practice, since h∗y(t)≤ g∗(t), so

H∗(t) =
h∗y(t)

2

g∗(t)
≤ g∗(t)2

g∗(t)
≤ g∗(t) = 0.

Similarly, we define H(t) = 0 if g(t) = 0. In either case, the above argument still applies.

Second, suppose that g∗(t)≥ ε
4
, in which case

g(t)≥ g∗(t)− ε

8
≥ ε

8
.

Then, we have ∣∣∣∣h∗y(t)2

g∗(t)
− hy(t)

2

g(t)

∣∣∣∣≤ 8

ε
· |h∗y(t)2−hy(t)2|

=
8

ε
· |h∗y(t)−hy(t)| · |h∗y(t) +hy(t)|

≤ 8

ε
· ε

2

16
· 2

≤ ε.

In either case, the claim follows, completing the proof. �

Next, we prove that the estimation error in Lemma 7 goes to zero.

Lemma 8. Let P be a probability distribution over R, let p(x) be the probability density function for P,

let F (x) be the cumulative distribution function for P, let α :R→ [0,1] be an arbitrary function, let

g∗(t) =

∫
α(x) · I[x≤ t] · p(x)dx,
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and let x(1), ..., x(n) be i.i.d. random samples from P, and let

g(t) =
1

n

n∑
j=1

α(x(j)) · I[x(j) ≤ t]

be the empirical estimate of g∗ on these samples. Then, we have

Prx(1),...,x(n)∼P

[
‖g− g∗‖∞ ≥

4 logn√
n

]
≤ 2

n3/2
,

for sufficiently large n.

Proof. First, we define points t0, t1, ..., t√n ∈R that divide R into
√
n intervals according to the cumulative

distribution function F (x) (for convenience, we assume n is a perfect square). In particular, we choose ti to

satisfy

ti ∈ F−1

(
i√
n

)
.

For convenience, we choose t0 =−∞ and t√n =∞, which satisfy the condition. Now, for each i ∈ [
√
n], let

Ii = (ti−1, ti]. Note that these intervals cover R, i.e., R = I1 ∪ ...∪ I√n.

Then, we can decompose the quantity ‖g− g∗‖∞ into three parts:

‖g− g∗‖∞ = sup
t∈R
|g(t)− g∗(t)|

= sup
i∈[
√
n]

sup
t∈Ii
|g(t)− g∗(t)|

≤ sup
i∈[
√
n]

sup
t∈Ii
{|g(t)− g(ti)|+ |g(ti)− g∗(ti)|+ |g∗(ti)− g∗(t)|}

≤ sup
i∈[
√
n]

sup
t∈Ii
|g(t)− g(ti)|+ sup

i∈[
√
n]

|g(ti)− g∗(ti)|+ sup
i∈[
√
n]

sup
t∈Ii
|g∗(ti)− g∗(t)|.

We show that each of these three parts can be made arbitrarily small with high probability by taking n

sufficiently large.

First term. We first show that for every i∈ [
√
n], the interval Ii contains at most n1/2 logn of the points

x(1), ..., x(n) with high probability. By the definition of the points ti, the probability that a single randomly

selected point x(j) falls in Ii is n−1/2 (since the points ti were constructed according to the cumulative

distribution function F ):

M =Ex∼P [I[x∈ Ii]] = Prx∼P [x∈ Ii] =
1√
n
.

Then, the fraction of the n points x(j) that fall in the interval Ii is

M̂ =
1

n

n∑
j=1

I[x(j) ∈ Ii].

Note that each I[x(j) ∈ Ii] is an random variable in [0,1], so by Hoeffding’s inequality, we have

Prx(1),...,x(n)∼P

[
|M̂ −M | ≥ logn√

n

]
≤ 2e−2(logn)2 ≤ 1

n2

for sufficiently large n. Now, note that each point x(j) in Ii can increase the value of |g(t)− g(ti)| by at most

n−1. Since there are n · M̂ points x(j) in Ii, the total increase is bounded by M̂ , i.e.,

Prx(1),...,x(n)∼P

[
sup
t∈Ii
|g(t)− g(ti)| ≥

2 logn√
n

]
≤ 1

n2
.

By a union bound, this inequality holds for every i∈ [
√
n] with probability n−3/2.
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Second term. Note that each α(x(j)) ·I[x(j) ≥ t] is a random variable in [0,1]. Therefore, by the Hoeffding

inequality, we have

Prx(1),...,x(n)∼P

[
|g(ti)− g∗(ti)| ≥

logn√
n

]
≤ 2e−2(logn)2 ≤ 1

n2

for sufficiently large n. By a union bound, this inequality holds for every i∈ [
√
n] with probability n−3/2.

Third term. Since t≤ ti, we have I[x≤ t]≤ I[x≤ ti]. Thus, for all t∈ Ii, we have

|g∗(ti)− g∗(t)|=
∣∣∣∣∫ α(x) · (I[x≤ ti]− I[x≤ t]) · p(x)dx

∣∣∣∣
≤
∫

(I[x≤ ti]− I[x≤ t]) · p(x)dx

= F (ti)−F (t)

≤ n−1/2,

where the last inequality follows from the definition of ti and the fact that t∈ Ii.

Combined bound. Putting the three results together, we can conclude that for sufficiently large n, we

have

Prx(1),...,x(n)∼P

[
‖g− g∗‖∞ ≥

4 logn√
n

]
≤ 2

n3/2
,

as claimed. �

B.3. Proof of Regularity of the Gain Function

In this section, we prove that the gain function G∗ satisfies certain regularity conditions.

Lemma 9. The function G∗ :R→R is continuous and has bounded support.

Proof. It is clear that G∗ is continuous. To see that G∗ has bounded support, recall that p(x) has bounded

support, i.e., p(x) = 0 for |x|>xmax. Then, note that if s > xmax, we have

Prx∼P [CN∗ ∧ (x≤ s)] = Prx∼P [CN∗ ]

Prx∼P [CN∗ ∧ (x> s)] = 0

Prx∼P [f(x) = y |CN∗ ∧ (x≤ s)] = Prx∼P [f(x) = y |CN∗ ]

Prx∼P [f(x) = y |CN∗ ∧ (x> s)] = 0

Therefore, we have

G∗(s) =−H∗(f,CN∗ ∧ (x≤ s))−H(f,CN∗ ∧ (x> s)) +H(f,CN∗) = 0.

By a similar argument, G∗(s) = 0 for s <−xmax, so the claim follows. �

C. User Study

We provide the remaining questions in our user study here. Fig. 9 lists the remaining three pairs of questions

for our extracted decision trees (left) and the rule lists (right) in our user study. The first two questions are

in the main body of the paper (Fig. 5 in §5.3).
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According to the decision tree, does being over 50 years old
put patients at a relatively higher risk of diabetes?

• Yes
• No

According to the rule list, does being over 41 years old put
patients at a relatively higher risk of diabetes?

• Yes
• No

According to the decision tree, for which patient subpopu-
lation might a diagnosis of chronic lower back pain newly
introduce a high risk of diabetes?

• Patients who are over 50 years old
• Patients who are over 50 years old and have high choles-

terol
• Patients who are over 50 years old and who smoke

According to the rule list, for which patient subpopulation
might a diagnosis of high cholesterol newly introduce a high
risk of diabetes?

• Patients who are over 41 years old
• Patients who are over 41 years old and take arthritis

medication
• Patients who are over 41 years old who smoke

Consider patients over 50 years old who have high cholesterol,
and have had a pre-operative medical exam with no findings.
What additional information does the decision tree need to
give an assessment of their diabetes risk?

• Whether they have edema
• Whether they have dermatophytosis of nail
• Whether they are taking high triglycerides medication
• No additional information is needed

Consider patients who are 41–52 years old who are taking
arthritis medication. What additional information does the
rule list need to give an assessment of their diabetes risk?

• Whether they are taking pain medication
• Whether they are taking pain medication, have high

cholesterol, have restless legs syndrome, and/or smoke
• Whether they have high blood pressure and/or smoke
• No additional information is needed

Figure 9 Remaining questions asked in our user study on the diabetes risk classifier for our extracted decision

tree (left) and for the rule list (right).


