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In the summer of 2020, in collaboration with the Greek government, we designed and deployed Eva – the

first national scale, reinforcement learning system for targeted COVID-19 testing. In this paper, we detail

the rationale for three major design/algorithmic elements: Eva’s testing supply chain, estimating COVID-19

prevalence, and test allocation. Specifically, we describe the design of Eva’s supply chain to collect and process

thousands of biological samples per day with special emphasis on capacity procurement. Then, we propose

a novel, empirical Bayes estimation strategy to estimate COVID-19 prevalence among different passenger

types with limited data and showcase how these estimates were instrumental for a variety of downstream

decision-making. Finally, we propose a novel, multi-armed bandit algorithm that dynamically allocates tests

to arriving passengers in a non-stationary environment with delayed feedback and batched decisions. All of

our design and algorithmic choices emphasize the need for transparent reasoning to enable human-in-the-

loop analytics. Such transparency was crucial to building trust and buy-in among policymakers and public

health experts in a period of global crisis.
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1. Introduction

In early 2020, countries restricted non-essential travel to mitigate the spread of the COVID-

19 pandemic. These restrictions crippled many economies, with estimated losses of $1

trillion and 19 million jobs due to tourism in European countries alone (Wor20). As the

first wave abated in April 2020, countries sought to reopen their borders, not only for

tourists but also for goods and labor, all while continuing to safeguard public health.

Ideally, to prevent importing new cases, re-opening nations would test every arriving

traveler and quarantine those who test positive and their contacts (AKOW20, FCZ20,

RDJ20, KF20). Unfortunately, amidst the crisis, both testing resources and medical per-

sonnel were scarce, making this approach (even with group testing (Dor43)) untenable.

Targeted allocation of scarce testing resources was necessary.
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Against this backdrop, we partnered with the Greek Government to design and deploy

Eva – the first national scale, reinforcement learning system that adapts to real-time infor-

mation for targeted COVID-19 testing. Importantly, Eva uses testing results from recently

screened passengers to learn and react to the evolving pandemic. Eva had two intertwined

goals: i) optimize the allocation of Greece’s scarce testing resources to identify as many

infected, asymptomatic passengers at the border as possible, and ii) develop reliable esti-

mates of COVID-19 prevalence across passengers from different origin countries to inform

Greece’s travel protocols and downstream decision-making.

Our partner paper (BDG+21) describes the effectiveness of Eva and the resulting epi-

demiological insights; in contrast, the current paper delves into key operational and algo-

rithmic design choices underlying Eva, with special emphasis on interpretability.

1.1. Overview of the EVA System

Eva as presented in this paper was deployed on August 6th, 2020 and remained in operation

until October 30th, 2020 (at which point the tourist season ended and Greece returned to

a lockdown). During the peak season (August, September), Eva processed travelers from

approximately 41,830 (±12,784) households and performed 5,400 (±982) tests on a daily

basis; accounting for no-shows, approximately 16.7% of daily arrivals were tested across

40 different ports of entry. The underlying supply chain included 120 teams of nurses and

doctors, 200 firemen and policemen, 32 private and public testing labs, and logistics teams

to transport biological samples from ports of entry to labs. To keep the current paper

self-contained, we first briefly overview Eva’s operations (see also Fig. 1):

1. Passenger Locator Form (PLF): All travelers complete a PLF (one per household) at

least 24 hours prior to arrival, with information on their origin country and region1,

age group, gender, point and date of entry, and intended destination within Greece.

2. Estimating COVID-19 Prevalence among Traveler Types: Using PLF data and recent

testing results from previous travelers, we estimate the COVID-19 prevalence among

different types of passengers. The procedure entails two steps: First, we group passen-

gers into types (e.g., all passengers arriving from Madrid, Spain). Passengers in the

same type are expected to have similar risk profiles. We then use empirical Bayes to

estimate the prevalence for each type (see Sec. 4).

1 “Region” represents a state or province. Since countries use different nomenclature, we use the generic “region.”
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Figure 1 Overview of Eva. (Adapted from (BDG+21).) Eva, the first national-scale reinforcement learning system

for targeted COVID-19 testing, was deployed in the summer of 2020 across all 40 ports of entry to Greece.

The closed-loop system reacts dynamically to the evolving pandemic to allocate tests and was able to

identify 1.85x as many asymptomatic, infected passengers at the border as a random surveillance policy.

3. Allocating Scarce Tests: Leveraging these prevalence estimates, Eva targets a subset of

travelers for (group) PCR testing upon arrival based on their (anonymized) PLF data.

This targeting must respect various operational constraints (e.g., delayed feedback

from labs, resource constraints) that reflect Greece’s testing supply chain (see Sec. 5).

Allocations today determine the data available for estimating prevalence in the future.

Hence, Eva strategically allocates some tests to traveler types for which it does not

currently have precise prevalence estimates, to ensure better estimates in the future.

This feedback step is crucial. If Eva simply greedily allocated tests to the highest risk

passengers, after a few days, there would be no recent data on types with moderate

prevalence. If COVID-19 prevalence then spiked in one of those moderate types, Eva

would be blind to the increased risk to public health.

4. Closing the Loop: Anonymized results from the tests performed (Step 3) are added to

the database in 24-48 hours and used to update prevalence estimates (Step 2).

1.2. Impact: Identifying Asymptomatic, Infected Passengers

Before proceeding, we summarize some of the documented effectiveness of Eva from our

partner paper (BDG+21). The left panel of Fig. 2 compares the number of asymptomatic,

infected passengers caught by Eva during deployment to those a random, surveillance policy

with the same testing budget would have caught. Random surveillance was the policy

originally proposed by Greece (before our collaboration), because it requires no information



4 Bastani, Drakopoulos, Gupta, et. al: Designing the Greek COVID-19 Testing System

Season

Peak

Improvement

Off−Peak

1.85x

1.36x

Sep Oct Nov

N
o.

 In
fe

ct
io

ns
 C

au
gh

t (
A

no
ny

m
iz

ed
)

Method

Cases

Peak

Deaths

Off−Peak

Positivity

1.45x

1.37x

1.25x

1.09x

1.13x

1.14x

Aug Sep Oct Nov

N
o.

 In
fe

ct
io

ns
 C

au
gh

t (
A

no
ny

m
iz

ed
)

Cases Deaths Eva Positivity

Figure 2 Impact of Eva: Cases Identified Relative to Other Policies (Adapted from (BDG+21).) The left panel

compares Eva to a random, surveillance policy; the right panel compares Eva to policies where the

probability of testing a passenger is proportional to one of three epidemiological metrics for their origin

country (cases per capita, deaths per capita, or positivity rate). The dotted vertical line separates the

peak and off-peak travel seasons. Inset tables report the relative improvement of Eva over corresponding

benchmark. The y-axis is anonymized for privacy reasons. Smoothed lines are computed by cubic-spline.

infrastructure to implement. Counterfactual analysis shows that, in the peak travel season

(August, September), Eva identified approximately 1.85x as many infected, asymptomatic

passengers as random surveillance testing (BDG+21). In other words, Greece would have

needed 85% more testing capacity to achieve the same effectiveness.

Similarly, the right panel compares performance to benchmark policies inspired by recent

proposals by the EU (Gen20). These policies test travelers roughly proportionally to the

“risk” of their origin country, where “risk” is defined using one of three widely-used epi-

demiological metrics: cases per capita, deaths per capita, positivity rates. Eva identified

approximately 1.3x-1.5x as many infected, asymptomatic travelers in peak travel sea-

son (depending on the benchmark) (BDG+21). Unlike random surveillance, these policies

require similar information infrastructure investments as Eva, but achieve a fraction of the

benefit. Thus, Eva’s improvement relative to these policies stems solely from its ability to

learn from recent testing results (reinforcement learning).

We refer the interested reader to (BDG+21) for details of this analysis, and additional

discussion of the epidemiological and public policy implications.
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2. Contributions and Outline of Paper

Obviously, designing Eva involved a myriad of decisions. Many, if not all, of our design

choices were shaped by the practical reality of earning trust and “buy-in” from a largely

non-technical set of decision-makers in a period of crisis. This environment required that i)

Eva’s outputs, i.e., prevalence estimates and testing recommendations, follow from trans-

parent reasoning and that ii) it was possible to easily incorporate domain expertise from

epidemiologists and policy makers into any and all portions of the analytics pipeline, so-

called human-in-the-loop analytics (BBK18, BA20, BBS21).

Indeed, some readers may recall that the early stages of the COVID-19 pandemic were

characterized by immense uncertainty. Many basic epidemiological facts were still debated:

Could the virus be transmitted by touching a contaminated surface? How long after infec-

tion was a patient contagious? What was the reliability of rapid testing vs. Polymerase

Chain Reaction (PCR) testing? Similarly, there was little data (if any) to predict the pub-

lic’s response to the pandemic: How many would choose to travel if borders reopened?

Would travelers’ chosen destinations change? Finally, there was an incalculable number of

“unknown unknowns” – unanswered questions we did not yet know to ask.

With such pervasive uncertainty, we argue that transparent reasoning and human-in-

the-loop analytics are crucial to success. Hence, rather than laundry-list all the operations

research models underlying Eva, we focus on three crucial elements of Eva’s design and

highlight how these two principles shaped our design decisions. Specifically, we discuss:

1. Designing Eva’s Testing Supply Chain. Eva’s ability to adapt to unexpected spikes in

prevalence hinges on a robust supply chain that processes tests quickly. We formulate a

stochastic, mixed-binary, linear optimization problem to model procuring testing capacity.

Our formulation explicitly models the fact that tests will ultimately be allocated according

to our targeting procedure, inducing decreasing marginal effectiveness of additional capac-

ity at each port of entry. This is a distinctive and first-order feature of our application.

2. Estimating COVID-19 Prevalence Across Passenger Types. Accurate and intuitive preva-

lence estimates are key both for allocating tests to travelers as well as other downstream

decisions by policy-makers. For example, Eva’s prevalence estimates informed position-

ing of mobile-testing units within Greece (see Fig. 3), and also diplomatically sensitive,

national-level travel protocols such as “grey-listing” (discussed in BDG+21).
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Implications: Efficient Tracing, Zip-code level
risk evaluation

• Combining risk 
estimates, number of 
arrivals, destination 
zipcode -> added risk
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• Fast, efficient tracing 
using contact and 
destination 
information 

EVA team: Hamsa Bastani, Kimon Drakopoulos, Vishal Gupta

Figure 3 High Risk Locations within Greece.

(Simulated data). By combining travelers’ PLF data with Eva’s

prevalence estimates, we produced “risk” heat maps to guide

within-country operations, including allocating mobile testing

units to assess the spread to local populations in tourist-facing

industries (e.g., hotels, restaurants, night-clubs), and adapt

social distancing measures.

Unfortunately, effective estimation faces several statistical challenges: COVID-19 preva-

lence was relatively low in our population (on order of 0.2%). At the same time, arrival

rates varied substantially across countries. Both features lead to highly imbalanced data

(few positive cases and few arrivals from certain countries). Finally, prevalence is non-

stationary, making old testing results uninformative.

We propose a novel estimation procedure for COVID-19 prevalence that combines

LASSO regression and an empirical Bayes algorithm that seamlessly accounts for the afore-

mentioned challenges around time-inhomogeneity, imbalanced data, and limited data for

certain types. Perhaps surprisingly, our procedure yields estimates with simple, intuitive

structure easily explained to non-technical audiences. We demonstrate empirically that our

procedure is far more accurate than comparably simple maximum likelihood estimators,

and substantially more stable than blackbox estimators like Gradient Boosted Machines.

Our estimates achieve best-in-class performance when the number of origin countries is

large, even if the number of travelers from each country is small, the so-called “small-data,

large-scale” regime (GR21, GHR21, BSLZ19). In our non-stationary setting where old data

is uninformative, this limit is more relevant than the traditional large-sample limit.

3. Adapting the Allocation of Tests to Real-Time Feedback. In Eva’s closed-loop system, the

passengers we choose to test today determine the available data for estimating COVID-19

prevalence in the future. Thus, when allocating tests, Eva must balance two competing

goals: i) test “high-risk” passengers to prevent importing positive cases and ii) test all

passengers to develop high-quality estimates across all types. These twin goals resemble the

familiar “exploration-exploitation” tradeoff studied extensively in the multi-armed bandit

literature (Tho33, LR85, Git79, Aue02). However, our setting exhibits a number of features

that distinguish it from the classical setting: Labs require 24-48 hours to process results

(delayed feedback), and lack of reliable internet connectivity at remote ports of entry
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necessitate pre-computing all allocations at the beginning of each day (batched decision-

making). Testing allocations must also respect supply chain constraints (constrained action

sets). Existing multi-armed bandit algorithms either cannot handle all of these challenges,

or perform excessive exploration in non-stationary environments.

Consequently, we propose a novel contextual multi-armed bandit algorithm for non-

stationary environments under delayed feedback, batching, and constrained action sets.

As discussed in Sec. 5, our algorithm uses a new technique we call “certainty-equivalent

updates” to account for information we expect to receive in the future. We show that

our algorithm leads to easily interpretable testing recommendations, unlike other popular

contextual bandit algorithms, supporting our aim for transparent reasoning.

2.1. Connections to Existing Literature

Several papers have considered the allocation of scarce COVID-19 testing resources

through simplified, theoretical models studying the structure of optimal testing policies

(AFG+21, CCI+21, DR20, MZ21, CHZ20, KT20). By contrast, our work focuses on high-

fidelity modeling in a reinforcement learning context, with a premium on transparency

and interpretability. Moreover, to the best of our knowledge, we are the first to design and

deploy such a policy at a large scale and provide empirical evidence of its advantages.

In some ways, our testing supply chain design problem resembles classical supply chain

and network design problems like facility location and inventory fullfillment (AF19, AG15,

DPW21, DGWZ16, MNSDG09). However, unlike (some of) these models, decisions in

our setting are single-shot and non-adaptive. Moreover, demand will ultimately be served

using our targeting procedure. This feature introduces an important non-linearity into

the objective. Finally, our focus on “human-in-the-loop” analytics shifts focus away from

finding an “optimal” supply chain and towards understanding how the design depends on

hard-to-quantify costs to help decision-makers identify a good, robust design.

We utilize an empirical Bayes method for estimation. Empirical Bayes is common in

settings where one must solve hundreds of separate statistical estimation problems simulta-

neously (Efr12, JRR20). In epidemiology, these methods have been used to estimate preva-

lence across many (potentially related) populations (GR91, DLH94). Recently, (IW19)

proposed blending modern machine learning and empirical Bayes techniques. Our approach

is closest to this last stream, since we use demographics and LASSO regression to first

identify passenger types, and then empirical Bayes methods to form estimates.
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Finally, our work contributes to the literature on multi-armed bandits. From an applied

perspective, multi-armed bandits have been used in mobile health (TM17), clinical trial

design (DAI+18), online advertising (LCLS10) and recommender systems (ACJB18). To

the best of our knowledge, however, ours is the first deployment of a multi-armed bandit

algorithm at a national scale for a public-facing, high-stakes application.

From a theoretical perspective, there are various approaches to multi-armed bandit

problems (Tho33, Git79, LR85, Aue02). Many authors have also sought to relax some styl-

ized features of the classical setting including non-stationary rewards (BGZ14, LWAL18);

high-dimensional contexts (BB20); batched decision-making (GHRZ19, PRC+16); delayed-

feedback (JGS13, VCL+20); and budget constraints (AG13). Our algorithm addresses all

of these elements. For interpretability, our approach builds on the optimistic gittins index

approach (GF16), but with a new certainty-equivalent updating technique to account for

batching/delayed feedback under non-stationarity.

3. Designing Eva’s Testing Supply Chain

In the summer of 2020, neither the European Union nor the Greek COVID-19 Scientific

committee had approved rapid tests due to concerns around accuracy. Consequently, Eva

exclusively used Polymerase Chain Reaction (PCR) testing, which requires specialized

equipment. Unfortunately, due to a rise in global demand, the time to procure and set-up

new equipment was estimated to be 3-6 months, making capacity expansion impossible.

Instead, Greece contracted testing capacity with 32 private and public labs to process

biological samples. Labs were paid per test processed, with no significant differences in

pricing. Based on their equipment and personnel, each lab had its own maximum daily

processing capacity and required biological samples collected with either a dry-swab or a

wet-swab. Different equipment is required for each swab type, and not all labs can analyze

both swab types. Procurement costs for swabs are negligible relative to processing costs.

Tests were performed at each port of entry by dedicated medical personnel. Ports of

entry that used both swab types faced more complex operations because the types are

handled differently (DGT+12). Quantifying the cost of this complexity is difficult. Hence,

policy-makers preferred to use one swab type at each port of entry “as much as possible.”

Transporting biological samples safely to labs also requires special equipment. Since

Greece has many points of entry on remote islands and samples must be transported twice
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daily to maintain fast processing times, a given port of entry can only be served by a

subset of nearby labs. Because of the (relatively) short distances traveled, the dominant

transportation costs were fixed “per trip” costs that were similar across all entry/lab pairs.

Finally, demand far exceeds the supply in this system; we could only test about 17%

of arrivals and our allocation procedure fully utilizes capacity by design. Issues around

flexibly allocating spare capacity to handle excess demand (as in the celebrated long-chain,

JG95) were largely second-order. Thus, to the extent possible, policy-makers preferred

designs where each port of entry was served by a single lab to minimize the chance of a

“cascading” back-log across labs or an error in shipment.

In summary, inventory and procurement costs are negligible, shipment costs are largely

homogeneous “per-trip”, and per-unit processing costs are homogeneous. Moreover, adjust-

ing the supply chain mid-summer was deemed too expensive and risky, and so design

decisions (particularly with outside private contractors) were irrevocable. Therefore, we

model the resulting supply chain design problem as a single-stage stochastic, mixed-binary

linear optimization problem (see Appendix A). The primary decision variables encode how

many tests each lab will process from each port of entry, subject to i) only processing

tests from sufficiently nearby ports of entry, ii) not exceeding lab processing capacities and

iii) ensuring ports of entry use swab types compatible with their respective labs. Notice

that given a feasible solution to this problem, one can immediately calculate the avail-

able testing capacity at each port of entry (an input to the allocation procedure) and the

corresponding number of required medical personnel to support that capacity.

Specifying an Objective. Intuitively, a good supply chain design will maximize the

expected number of infections caught by our targeting procedure throughout the summer,

while penalizing excessive shipment costs and the number of ports using both swab types.

Formalizing this intuition into an objective faces two challenges: i) For a given testing

capacity at a port of entry, how do we quantify the number of infections that will be caught

by our targeting policy? ii) What is the relative benefit of finding more infections compared

to reducing shipment costs or reducing the number of ports using both swab types?

For the first challenge, traditional supply chain models assume a fixed benefit per-unit

of demand served, suggesting a constant marginal benefit for each additional test allocated

to a port. Some reflection suggests, however, the marginal benefit of serving more demand

at a port of entry is decreasing under targeted testing; the first few tests will be given
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Figure 4 Contrasting Risk at Ports of Entry. The left panel contrasts the distribution of COVID-19 risk among

arriving passengers at two different ports of entry. The right panel shows the expected number of infec-

tions caught when varying the percentage of arrivals tested at each port (marked with an “x”.) Arrival

heterogeneity induces very different functions. Solid lines show our piecewise linear approximation.

to the highest-risk passengers, and additional tests necessarily go to lower-risk passen-

gers. Moreover, because the mix of types of passengers at each port varies substantially,

the prevalence distribution among arriving passengers also varies substantially, causing

the benefit of serving additional demand to also vary. Fig. 4 depicts a concrete example

contrasting the prevalence distribution at two ports of entry.

We show in Appendix A that the expected number of infections caught at a port under

perfect targeted testing is a concave function of the fraction of arrivals tested (see right

panel of Fig. 4). Although one can maximize this concave function using lazy cuts and

outer-linearization (see Appendix A), we prefer a simpler approach and approximate the

relevant function by a piecewise-linear concave function with a small number of pieces.

The right panel of Fig. 4 shows that we already obtain an accurate fit with 3 pieces.

Our approach to the second challenge – quantifying the benefit of identifying additional

infections relative to shipping costs or the increased complexity of stocking both swab

types – was again inspired by human-in-the-loop thinking. Policy-makers were reluctant or

unable to quantify these costs which fundamentally compare public health to money spent.

Rather than engage in a difficult preference elicitation exercise, we built a decision-support

tool that allowed policy-makers to compare the expected number of infections caught by a

supply chain design and the actual structure of the design as we varied these parameters.
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Figure 5 Infections vs. Shipment Cost Tradeoff. First Panel: As the number of entry/lab pairs used grows,

shipping costs increase proportionally, but the expected number of infections identified only increases

marginally. Y-axis is relative to the number of infections caught by the densest configuration. Second

Panel: Structure of sparsest chain (31 routes), chosen to ensure that no ports of entry are left unstaffed.

Third Panel: Structure of densest chain (43 routes). Red circles represent labs, green squares represent

ports of entry, and blue (resp. red) edges represent the number of wet (resp. dry) swabs. Edge weights are

proportional to the number of tests processed. Results depict a subset of 18 labs and 31 ports of entry.

For example, Fig. 5 shows the tradeoff between the number of infections caught and the

number of entry/lab pairs in the chain (which is proportional to shipping costs). It also

shows two designs, corresponding to the sparsest and densest configurations.

As we use more routes (and shipping costs increase), we observe only a marginal increase

in the expected number of infections identified. The structure of the resulting network

is somewhat different. By examining this tradeoff and the underlying network, decision-

makers were able to incorporate their own expertise and “on-the-ground” experience to

select a suitable design, without needing to quantify their relative preference between

infections caught and Euros saved.

A similar analysis shows that using only one swab type per port of entry results in no

loss in number of infections identified.

4. Estimating COVID-19 Prevalence

We next describe our procedure for estimating COVID-19 prevalence with special emphasis

on interpretability. To be concrete, in what follows we focus on one, specific property that

we argue interpretable estimators should satisfy in our setting:

Definition An estimator enjoys perturbation monotonicity if, after adding exactly 1

positive case (and 0 negative cases) to the data, no type’s prevalence estimate decreases.
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We argue that decision-makers intuitively expect perturbation monotonicity. Estimates

are updated daily, and epidemiologists on the Greek COVID-19 taskforce monitor trends.

If, after observing one positive from a woman 30-40 years old from Country A and no other

data, the prevalence estimates for men 20-30 years old from Country B (a seemingly unre-

lated type) suddenly decreased, questions are naturally raised. Said differently, estimators

that do not satisfy perturbation monotonicity are not transparent.

We next show that some state-of-the-art machine learning methods do not guarantee

perturbation monotonicity.

4.1. Drawbacks of Blackbox Models

Gradient Boosted Machines (GBM) regression is one of the most robust and accurate

blackbox machine learning methods for structured data (Had16). Unfortunately, GBM

does not satisfy perturbation monotonicity.

To illustrate, we trained a GBM to predict prevalences using passenger PLF data (age

group, gender, country of origin2) and testing data from Eva from the two weeks preceding

Sept. 1, 2020.3 There are 67,154 data points in this time frame. We then perturbed these

data by adding a single positive case for a synthetic passenger from country A (anonymized)

with other features drawn randomly. We retrain the GBM on the augmented dataset and

compare estimates (see Fig. 6).

Prevalence estimates (averaged over all passengers from a country) move in both direc-

tions, sometimes dramatically. Across all countries, the estimated changes ranged from

81% reduction (Country B) to a 504% increase (Country G). Practically, such dramatic

changes from one additional case are untenable. For example, before the additional case,

Country B exhibited a prevalence above 3%, high enough to merit discussions about chang-

ing national-level, travel protocols with that country. After the addition of a positive case

from country A, a seemingly unrelated type, Country B’s estimate dropped substantially.

Given the range of downstream activities informed by these estimates, such swings could

be quite dangerous.

Although our discussion above focuses on GBM, similar behavior is common in other

blackbox models. Their lack of transparent reasoning makes diagnosing the cause of, and

explaining the reason for, problematic behaviors challenging.

2 We exclude region of origin in this exercise as there were 17,000 distinct regions in the data, requiring 17,000
features in a standard one-hot encoding. The R implementation of GBM supports categorical variables with at most
1,024 unique values. Intuitively, including more features only increases instability. 3 We only use recent data
for estimation because prevalence is non-stationary (old data is uninformative). Conversations with epidemiologists
suggested that a 2-week window was appropriate given known evidence at the time.
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countries as of Sept. 1, 2020 using GBM (red

bars). Green bars show estimates after observ-

ing one additional positive case from country

A. Labeled percentages show the change in

estimates after the perturbation. GBM does

not enjoy perturbation monotonicity.

4.2. Our Empirical Bayes Approach

Unlike GBM, many simple estimators do enjoy perturbation monotonicity. Consider the

maximum likelihood estimator r̂MLE(t, c) which estimates the probability that a passenger

from country c is infected by the proportion of positive tests among passengers from c in

the last two weeks. By construction, if we add one additional case from country A, the

estimate for country A increases and all other estimates remain unchanged.

Unfortunately, the maximum likelihood estimator (MLE) suffers from imbalanced data,

particularly for rare countries. As an illustration, we compare r̂MLE(t, c) to a (foolish)

baseline estimator r̂Base, which estimates 0 prevalence for all passengers. A leave-one-out

type approximation to the mean-squared error (MSE) using the same data from Eva as

above suggests the excess MSE of r̂MLE(t, c) – i.e., the difference between the MSE of

r̂MLE(t, c) and r̂Base – is .000334. The MLE is worse than the baseline! In fact, the typical

error in r̂MLE is at least the square-root of this excess MSE, i.e.,
√
.000334 = 0.018. Since

the typical prevalence in our data set is 0.002, this suggests that the noise in the MLE

completely washes out any potential signal.

Consequently, we adopt an empirical Bayes perspective which is far more interpretable

than blackbox methods, but still performs well with imbalanced data. We group passengers

into distinct “types,” indexed by k, and estimate prevalence separately for each type. On

first reading, the reader can interpret a passenger’s type as their country of origin (see

Sec. 4.3 below for details on type definition.)
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A traditional Bayesian model might assert that the prevalence for type k is drawn from

a common prior distribution for all k, and, conditional on that draw, recent passengers

are positive with probability given by the draw. Importantly, in this model, the prior is

chosen based on domain knowledge alone, without leveraging the observed data. One then

computes the posterior distribution using the data, and estimates prevalence with the

posterior mean. If the prior is a Beta(α,β) distribution, the posterior mean is

r̂Bayes(t, k) =
S0

S0 +n(t, k)
rPrior +

n(t, k)

S0 +n(t, k)
r̂MLE(t, k), (1)

where rPrior = α
α+β

is the prior mean, r̂MLE(t, k) is the observed proportion of positives

among type k passengers in the past two weeks, n(t, k) is the number of type k passengers

tested in the past two weeks, and S0 = α+β is the strength of the prior.

Our empirical Bayes procedure is very similar to the classical procedure conceptually.

However, instead of specifying α, β (equivalently rprior, S0) from domain knowledge, we

fit them from the data. We adopt a moment-matching approach common in the empirical

Bayes literature; we estimate r̂prior and Ŝ0 in order to match the first two moments of

the observed testing data. We then plug these estimated values into Eq. (1) to obtain our

estimate r̂EB(t, k) prevalence (see Appendix B for details).

The resulting estimator has an intuitive form. Eq. (1) is a convex combination between

the MLE and the prior mean. For types with large n(t, k) (lots of data), the convex combi-

nation is close to the MLE, which we would intuitively expect. For types with small n(t, k)

(limited data), the estimate shrinks towards the prior mean rprior, ameliorating the afore-

mentioned variability for rare types. Hence, types with limited data “borrow information”

from types with more data to reduce variability. Moreover, our moment-matching construc-

tion chooses r̂prior to be the average observed prevalence across all types, i.e., estimates for

rare types are shrunk towards the “typical” prevalence.

Fig. 7 illustrates this idea using the same data from Eva used above. Here, we fit the

prior mean via our moment-matching method, and plot the excess MSE over the baseline

estimator rBase averaged over all types k at time t as we vary S0. From Eq. (1), S0 = 0

corresponds to the MLE rMLE(t, k), but its excess MSE is too large for the plot. The red

point corresponds to our estimator r̂EB(t, k), which substantially improves upon r̂MLE(t, k).

Our estimator does not directly minimize the estimate of MSE. We prefer our procedure

to directly minimization because, as seen in Appendix B, our estimate admits a simple
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Figure 7 Excess MSE over baseline estimator.

The x-axis depicts the prior strength S0 = α + β. The

MLE estimate r̂MLE (clipped from plot for readabil-

ity) corresponds to a prior strength of zero and has far

worse MSE than the baseline of always estimating zero.

Our empirical Bayes estimator (red dot) substantively

improves performance and approximately minimizes MSE

by trading off bias and variance.

closed-form formula that is very robust to data perturbations when the number of types

is large. Indeed, we prove that as the number of types grows to infinity, our estimator

enjoys perturbation monotonicity, and converges to the Bayes optimal estimator even if the

number of tests n(t, k) performed for each type is small. This strong performance guarantee

mirrors similar guarantees in the so-called small-data, large-scale regime (GR21).

4.3. Identifying Interpretable Types

We next describe our method for choosing a small set of interpretable types. PLF data

specify a passenger’s age group (ten buckets), gender (3 buckets), country of origin, and

region of origin. In a typical two-week period, Eva saw arrivals from approximately 170

distinct countries and 17,000 regions. Thus, with the most granular definition, we would

need 10× 3× 17,000> 500,000 types.

Statistically, estimation in such high dimensions is challenging. Practically, such a large

number of types gives little insight to decision-makers. Consequently, inspired by the

screening literature (FL08), we limit the number of types under consideration.

Our procedure has three steps: First, we fit our empirical Bayes estimates assuming

types are defined by country of origin. This approach accords with epidemiological intu-

ition because geography is highly predictive of prevalence. Second, we fit a LASSO logistic

regression to predict a passenger’s test results based on the fitted empirical Bayes preva-

lence for their country of origin, and dummy variables encoding their gender, age group

and region of origin. The resulting non-zero components identified by LASSO signal buck-

ets (e.g., regions) where testing results differed significantly from what one would expect

based on origin country alone. Third, we re-define types more granularly, creating new
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types for each of the non-zero LASSO coefficients, and refit our empirical Bayes estimates

with the new set of types. For example, if the dummy variable for Madrid, Spain was

non-zero in the LASSO fit, we removed the type for “Spain,” and replaced it with “Spain,

Madrid” and “Spain, not Madrid.” After all such replacements, we re-run our empirical

Bayes procedure with the larger set of types (see also (BDG+21) for additional details).

Our procedure ensures that significant signals beyond country of origin are isolated and

exploited. Over the summer of 2020, this procedure never identified additional types based

on age or gender, and only identified a handful of types based on specific regions. In this

sense, the number of types constructed was minimal. Having a smaller number of types

defined solely in terms of origin country and region improves interpretability, allowing

public health officials to sanity-check estimates against other sources of data.

4.4. Communicating with Policy-Makers

Fig. 8 shows the resulting empirical Bayes estimates for prevalence with confidence intervals

for a typical day from the summer of 2020. This plot appeared on the dashboards of Greek

officials to summarize the status of the pandemic and inform downstream decisions.

A feature of our empirical Bayes procedure is that we obtain posterior distributions and,

hence, can easily illustrate (approximate) confidence intervals. Such confidence intervals

helped us communicate uncertainty to non-technical collaborators, and, in particular, the

need for exploration tests, i.e., tests allocated to types with moderate prevalence types

but high uncertainty. Indeed, some collaborators initially viewed such tests as wasteful.

Visualizations like Fig. 8 illustrated that large confidence intervals might be hiding risky

types and required additional tests to resolve uncertainty. We discuss the test allocation

procedure and how we ensured its transparency in the next section.

5. Allocating Tests Transparently

Finally, we describe our strategy for allocating tests based on our prevalence estimates.

5.1. Certainty-Equivalent Updates

Two key challenges in our setting are batching (all testing decisions for the day must be

pre-computed at the start of the day) and delayed feedback (it takes 24-48 hours for labs

to process tests). Consequently, at any given point of time, there are a large number of

pipeline tests – tests that have been allocated but whose results have not yet been observed.
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Figure 8 Prevalence Estimates. (Adapted from (BDG+21)) Actual estimated prevalence and 95% confidence inter-

vals for each type on a given day. The x-axis indexes different types (anonymized) ordered from highest

prevalence (left) to lowest prevalence (right). This plot was featured on policymakers’ dashboards.

Standard approaches simply ignore pipeline tests and update estimates only when the

results become available (see, e.g., JGS13, VCL+20). However, this strategy is problematic

since it leads to significant over-exploration, which can hurt performance and erode trust.

In particular, suppose type k passengers have an estimated prevalence that is low but

uncertain. In the classical bandit setting, we would allocate a few exploration tests to type

k passengers, use the resulting feedback to reduce the uncertainty of type k estimates,

and then exploit by allocating remaining tests to passenger types with high estimated

prevalence. As noted in the previous section, we can effectively communicate this need for

limited exploration of uncertain types using Fig. 8. However, in the presence of delayed

feedback and batched decision-making, we would keep allocating tests to type k passengers

until we observe feedback that reduces the uncertainty, which might take two days and

potentially thousands of tests. Consequently, we would allocate far more exploration tests

to type k passengers than necessary to resolve uncertainty, thereby missing out on the

opportunity to exploit (catch likely infected travelers at the border).4 Naturally, this hurts

performance and erodes trust in the allocation mechanism.

We introduce a novel algorithmic technique called certainty-equivalent (CE) updates

to effectively balance exploration and exploitation despite the large number of pipeline

tests. Although we do not observe immediate feedback when allocating a test, we can still

estimate the likely reduction in the variance of our posterior distributions. If we ignore

4 The batched bandit literature (PRC+16, GHRZ19) partially resolves this issue in stationary environments by
uniformly exploring all types in early batches, and then committing to the type with the highest prevalence in later
exploitation batches. However, this strategy is untenable in highly non-stationary environments, because the data
from initial exploration in early batches are not representative of current prevalence. (BM07) propose a heuristic with
a similar goal as our CE updates, but it is specific to (less interpretable) upper confidence bound (UCB) algorithms.
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Figure 9 Over-exploration without CE updates.

Fraction of arrivals tested for 10 countries where

the two policies differ on Sept. 1, 2020 using our

bandit algorithm with and without CE updates

(red and green bars, respectively). Labeled numbers

show estimated prevalence per 1000. Without CE

updates, the bandit over-explores types with low

prevalence; with CE updates, it allocates a few tests

to all types (exploration) but primarily tests types

with high prevalence (exploitation).

the uncertainty (motivating our nomenclature certainty-equivalent) around our estimate

r̂EB(t, k), then, after allocating an additional test to a type k passenger, we expect to

observe a positive result with probability r̂EB(t, k) and a negative result with probability

1-r̂EB(t, k) within 48 hours. Accordingly, after allocating a test, we update the parameters

of our posterior distribution with this expected result (see Appendix C). The update

does not change our estimate of the mean prevalence, but reduces the variance of our

posterior distributions. In this sense, it quantifies the expected additional information we

will receive when test results are returned. Importantly, CE updates cause our optimistic

gittins indices to also update as we allocate tests within a batch (day). Thus, they ensure

that our algorithm allocates a minimal number of tests required to resolve uncertainty for

types with high variance (exploration) and allocates all remaining tests to arms with high

estimated prevalence (exploitation).

To illustrate, we computed test allocations on Sept. 1, 2020 using PLF and testing data

from Eva. Fig. 9 shows the resulting allocations for 10 (anonymized) countries with and

without CE updates. Without CE updates, the algorithm allocates an excessive number

of tests to passengers from countries with low prevalence; using CE updates ensures that

the majority of tests are allocated to countries with high prevalence, and only a fraction

of exploratory tests are allocated to countries with low prevalence. A particularly striking

example is contrasting types A and J (anonymized). The prevalence of type A is 2.89 cases

per thousand, whereas the prevalence of type J is more than five times smaller. However,

the strategy without CE updates tests over 50% of passengers of type J but only about

30% of passengers of type A. In contrast, the strategy with CE updates tests a very small
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Figure 10 Bandit Test Allocations. (Adapted from (BDG+21).) Actual number of test allocations (teal) and

untested scheduled arrivals (pink) for each type on a given day. The x-axis indexes different types ordered

from highest prevalence (left) to lowest prevalence (right). This plot was featured on policymakers’

dashboards.

fraction of passengers of type J but nearly 100% of passengers of type A. These issues not

only affect the performance of our algorithm, but can also be detrimental to building trust

with decision-makers — i.e., excessively testing seemingly safe types raises questions.

Fig. 10 shows our test allocations for the same data as Fig. 8. This plot was also featured

on the dashboards of policy-makers in the Greek government. Our algorithm allocates tests

to essentially all high-risk arrivals (exploitation) but additionally assigns a small number

of tests to all types (exploration).

5.2. Optimistic Gittins Indices: An Interpretable Risk Metric

We incorporate the above CE procedure into the optimistic gittins index algorithm of

(GF16) to determine testing allocations. We prefer gittins indices to other algorithms, such

as Thompson Sampling, partially because gittins indices are interpretable, deterministic

risk estimates that capture both the immediate utility of testing a passenger (i.e., their

estimated prevalence) as well as the future utility from reducing uncertainty in their esti-

mate. In our implementation, we estimate our indices with a short (1-step) look-ahead

window, i.e., we only consider the future utility of exploration for one additional day. This

choice was motivated by our highly non-stationary environment since data collected for

exploration are only useful for making predictions for a very limited future horizon.

5.3. Accounting for Supply Chain Constraints

Our test allocations are pre-computed at the start of the day. We first estimate the posterior

distributions of each type using our empirical Bayes strategy, and perform CE updates

to account for the expected information of current pipeline tests. We then sequentially
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allocate a test to the type with the highest optimistic gittins index for which there are still

available untested passengers, perform a CE update to the posterior for that type, and

repeat until we deplete our testing budget or run out of passengers.

Recall that our allocation mechanism must satisfy constraints on port-specific testing

budgets and arrivals. In particular, once our bandit algorithm identifies a passenger type

to test, we must decide where to allocate the test; depending on the choice, it will consume

testing budget at a particular port of entry. Some ports of entry have very limited testing

budgets, and passengers of some types only travel to certain ports of entry. Intuitively,

one should not allocate tests to common passenger types at a port of entry predominantly

used by rare types. We employ a greedy heuristic that strategically “saves tests” at ports

with few remaining tests for arrivals of rare types (see Appendix C).

6. Conclusions

We presented the rationale behind key algorithmic design choices for Eva, Greece’s COVID-

19 targeted testing system. In our view, similar principles should guide the deployment

of any high-stakes, public-facing decision-making system. Such systems necessarily involve

a wide network of stakeholders (e.g., policymakers, public health experts). Thus, it is

critical that the system produce interpretable outputs and recommendations supported by

transparent reasoning in order to promote human-in-the loop decision-making with domain

experts.
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Appendix A: Designing the Testing Supply Chain: Mathematical Optimization
Formulation

In this section, we describe our stochastic, mixed-binary linear optimization formulation for designing the

testing supply chain. Let e ∈ E index points of entry, and let Ā(e) denote the projected number of arrivals

at e.

We first begin by modeling the expected number of infections caught at e under targeted testing when we

allocate b(e) tests. In an ideal world (without the need for exploration), Eva would use PLF data to predict

the probability that a given passenger is COVID-19 positive before arrival. Eva would then order passengers

in decreasing order of these probabilities and choose to test the top b(e) passengers. The expected number

of infections caught is then

max
z

Ā(e)∑
i=1

P(Passenger i is infected)zi

s.t.

Ā(e)∑
i=1

zi ≤ b(e),

0≤ zi ≤ 1, i= 1, . . . , Ā(e).

By Lagrangian duality, this optimization is equivalent to

min
θ≥0

θb(e) +

Ā(e)∑
i=1

[
P(Passenger i is infected)− θ

]+
.

Letting Re be a random variable denoting the probability that a randomly chosen passenger at e is positive,

we can rewrite the above optimization as Ā(e) ·h
(
b(e)

Ā(e)
, e
)

, where

h(p, e)≡min
θ≥0

θp+E
[
(Re− θ)+

]
This representation makes clear that h(·, e) is concave; for a fixed e it is the minimum of an (infinite) number

of linear functions indexed by θ. Notice, p has the simple interpretation as the fraction of arrivals tested at

port e and the functions h(·, e) can be pre-computed to arbitrary accuracy over the domain p∈ [0,1].

Equipped with this function, we can state our formulation. Let l ∈ L index laboratories. For each l ∈ L,

let c(l) denote lab l’s daily processing capacity. Recall, not all labs may serve all points of entry due to

geographical/logistical constraints. Let C ⊆ E × L denote the set of compatible pairs of labs and points of

entry. Moreover, let Lwet and Ldry denote the set of labs capable of processing wet and dry swabs respectively.

Our primary decision variables are twet(e, l) and tdry(e, l) denoting, respectively, the number of wet (resp.

dry) swabs processed by lab l from port of entry e. For convenience, we also introduce auxiliary variables b(e)

representing the total number of tests processed from port of entry e, the auxiliary (binary) variable f(e, l)

indicating whether lab l processes any tests from port of entry e, the auxiliary (binary) variables gdry(e),

gwet(e) encoding if entry e uses dry and wet swabs respectively, and the binary variables g(e) encoding if

entry e uses both types of swabs.
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We then solve

max
∑
e∈E

Ā(e)x(e)−β
∑

(e,l)∈C

f(e, l)− γ
∑
e∈E,

g(e)

s.t. x(e) ≤ h

(
b(e)

Ā(e)
, e

)
, ∀e∈ E , (2a)

b(e) =
∑
l∈L

twet(e, l) + tdry(e, l), ∀e∈ E (2b)

b(e) ≤ Ā(e), ∀e∈ E , (2c)∑
e∈E

tdry(e, l) + twet(e, l) ≤ 0.8c(l), ∀l ∈L, (2d)

twet(e, l) ≤ f(e, l)Ā(e), tdry(e, l) ≤ f(e, l)Ā(e) ∀(e, l)∈ C, (2e)

tdry(e, l) ≤ Ā(e)gdry(e), twet(e, l) ≤ Ā(e)gwet(e), ∀(e, l)∈ C, (2f)

gdry(e) + gwet(e)≤ 1 + g(e), ∀e∈ E , (2g)

tdry(e, l) = 0, ∀l 6∈ Ldry, (2h)

twet(e, l) = 0, ∀l 6∈ Lwet, (2i)

tdry(e, l), twet(e, l), b(e)≥ 0, f(e, l), g(e)∈ {0,1} ∀(e, l)∈ C.

At optimality, constraints (2a) will all be tight, and, hence, the three terms in the objective function

correspond to i) the expected number of infections caught by targeted testing, ii) shipment costs, and iii)

operational costs associated to storing both types of swabs. Here, β ≥ 0 is a parameter (which we vary)

which encodes the relative benefit of identifying an extra infection versus paying an additional fixed-cost for

shipment. Similarly, γ ≥ 0 is a parameter (which we vary) which encodes the relative benefit of identifying

an extra infection versus the complexity of storing both types of swabs at a port. As mentioned in the main

text, precisely estimating these constants is impossible, and our decision-support tool allowed policy-makers

to inspect solutions for any choice of β and γ to choose a reasonable supply chain.

Constraint (2b) ensures b(e) correctly represents the total tests available at entry e, while constraint (2c)

ensures we do not allocate more tests than expected arrivals. Constraint (2d) ensures no more than 80% of

the testing capacity at lab l is utilized. The parameter 80% was chosen exogenously based on intuition from

queuing theory that some slack is necessary to ensure fast response times and robustness to disruptions.

Constraints (2e) force the binary variable f(e, l) to be 1 if any tests at e are served by l. Similarly,

constraints (2f) and (2g) ensure the binary variable g(e) is 1 if both swab types are used.

Finally, since we only define the decision variables tdry(e, l) and twet(e, l) for pairs (e, l)∈ C, the constraints

(2h) and (2i) ensure that each entry routes tests to a compatible lab given their swab types.

Because of the concavity of h(·, e), constraint Eq. (2a) is non-linear, and one cannot pass the above

formulation directly to a linear optimization solver. One remedy is to use the explicit representation of h(·, e)
to replace constraint (2a) by the family of constraints,

x(e) ≤ θ
b(e)

Ā(e)
+E

[
(Re− θ)+

]
∀θ≥ 0, ∀e∈ E .

One can then pass the resulting formulation to a linear optimization solver and use constraint

generation/lazy-cuts to sequentially add constraints corresponding to violated values of θ.
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In practice, recognizing that h(·, e) is noisily estimated, we take a simpler approach and approximate h(·, e)

by a piecewise-linear, concave function, i.e.,

h(p, e)≈ min
k=1,...K

h1(e, k)p+h0(e, k),

offline. We then replace constraint Eq. (2a) by the (finite) number of constraints

x(e) ≤ h1(e, k)
b(e)

Ā(e)
+h0(e, k), ∀k= 1, . . . , k, ∀e∈ E .

As shown in the main text, even for K as small as 3, the fit is exceedingly good.

In our implementation, we estimated the expectation defining h(·, e) by sample average approximation

using data from a pilot roll-out of EVA preceding deployment.

Appendix B: Details of Empirical Bayes Procedure

In this section we provide details on our empirical Bayes estimation procedure. We also refer the interested

reader to (BDG+21) which contains some additional (minor) details on how this procedure was implemented

with respect to countries with different risk tiers (also known as color designations).

We assume a set of Kt types available at time t. For each type k, we let n(t, k) denote the number of

tests performed on type k passengers in the past two weeks, and X(t, k) the number positives identified. For

simplicity, assume n(t, k)> 1 for all k. Let R(t, k) denote the true, unknown prevalence of type k at time t.

We posit the following statistical model:

R(t, k)∼Beta(α,β) k ∈Kt, (3)

X(t, k)|R(t, k), n(t, k)∼Binom(n(t, k),R(t, k)) ∀k ∈Kt.

In words, all prevalences are drawn from a common Beta distribution (the prior), and passengers test pos-

itively independently with probability equal to the prevalence of their type. The parameters (α,β) are

unknown constants.

B.1. Variance of the MLE r̂MLE(t, k)

Equipped with the above notation, the maximum likelihood estimator is

r̂MLE(t, k)≡ X(t, k)

n(t, k)
.

Recall that the conditional standard deviation of this estimator is

Std Dev
(
r̂MLE(t, k) |R(t, k)

)
=

√
R(t, k)(1−R(t, k))

n(t, k)

For rarely occurring types, n(t, k) may be less than 100, while typical prevalence is only 2/1000. In these

settings, we might expect that
1−R(t, k)

n(t, k)
≈ 1

n(t, k)
≥ R(t, k),

suggesting the above standard deviation is larger than the estimate itself. Hence, for such types, any signal

is washed out completely by noise.
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To provide some additional intuition, recall from the discussion preceding Fig. 7 that, using the two weeks

of data preceding Sept. 1, 2020, the excess MSE of r̂MLE(t, k) over a baseline estimator that always predicts

0 is approximately 0.000334. Hence, we have that√
1

|Kt|
∑
k∈Kt

MSE (r̂MLE(t, k)) ≥
√

1

|Kt|
∑
k∈Kt

Excess MSE (r̂MLE(t, k))

=
√

0.000334

≈ 0.0183,

as claimed in the main body.

B.2. Moment Matching Equations for Empirical Bayes

Consider the (unconditional) first two moments of the R(t, k). A straightforward computation shows that

M1 ≡
1

|Kt|
∑
k∈Kt

E
[
X(t, k)

n(t, k)

]
=

1

|Kt|
∑
k∈Kt

E [R(t, k)] =
α

α+β
. (4)

M2 ≡
1

|Kt|
∑
k∈Kt

E

[
X(t, k)

(
X(t, k)− 1

)
n(t, k)

(
n(t, k)− 1

) ] =
1

|Kt|
∑
k∈Kt

E
[
R(t, k)2

]
=

α2

(α+β)2
+

αβ

(α+β)2(α+β+ 1)
. (5)

In our procedure, we estimate these moments by the sample moments, yielding the following estimating

equations:

M̂1 ≡
1

|Kt|
∑
k∈Kt

X(t, k)

n(t, k)
=

α̂

α̂+ β̂
(6)

M̂2 ≡
1

|Kt|
∑
k∈Kt

X(t, k)
(
X(t, k)− 1

)
n(t, k)

(
n(t, k)− 1

) =
α̂2

(α̂+ β̂)2
+

α̂β̂

(α̂+ β̂)2(α̂+ β̂+ 1)
. (7)

We can solve these two equations for the two unknowns (α̂, β̂). The arithmetic is somewhat easier if we

instead work in the parameterization (r̂prior, Ŝ0) where r̂prior = α̂

α̂+β̂
and Ŝ0 = α̂+ β̂. Then,

r̂prior =
1

|Kt|
∑
k∈Kt

X(t, k)

n(t, k)
(8)

Ŝ0 =
r̂prior − M̂2

M̂2− (r̂prior)2
. (9)

Plugging these estimates into Eq. (1) yields our prevalence estimates.

As a technical aside, these estimators are only well-defined when M̂2− (r̂prior)2 > 0. Inspection shows the

left side of this inequality converges almost surely as |Kt| →∞ to the variance of R(t, k), and hence should

be positive for |Kt| sufficiently large.

We next show that our estimates are Bayes-optimal and enjoy perturbation monotonicity when the number

of types is large.

Proposition 1 (Optimality and Perturbation Monotonicity). Suppose the data are drawn from

the model Eq. (3) with α,β > 0.

i) For each k, r̂EB(t, k) = rBayes(t, k) +Op
(

1√
|Kt|

)
, even if n(t, k) is fixed as |Kt| →∞. In other words,

our estimates approach the Bayes optimal estimates as the number of types grows large, even if the

amount of data per type is small.
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ii) When adding exactly 1 positive case to the data, our EB estimates can decrease by at most Op
(

1√
|Kt|

)
.

In other words, our EB estimates satisfy perturbation monotonicity asymptotically as the the number

of types grows large.

Proof. First, observe by the central limit theorem that M̂1 =M1 +Op
(

1√
|Kt|

)
and M̂2 =Op

(
1√
|Kt|

)
as |Kt| →∞, even if all n(t, k) are bounded by constant. Consequently, by the delta method and a Taylor

Series expansion, we have that r̂prior = rprior +Op
(

1√
|Kt|

)
and Ŝ0 = S0 +Op

(
1√
|Kt|

)
. Since n(t, k)≥ 2 for

all k, our estimates r̂EB(t, k) are differentiable functions of (r̂prior, Ŝ0). Hence, by another application of the

delta method, we have that r̂EB(t, k) = rBayes(t, k) +Op
(

1√
|Kt|

)
, where rBayes(t, k) is the optimal Bayes

estimator (c.f. Eq. (1)) which depends on the (unknown) α,β. This proves the first claim.

To prove the second claim, it suffices to show that the Bayes estimator satisfies perturbation monotonicity.

However, this follows immediately from Eq. (1) since the only data-dependent quantity is r̂MLE(t, k) which

remains unchanged when k 6= ` and only increases for k= l. �

Appendix C: Details of Test Allocation Algorithm

To keep the paper self-contained, this appendix briefly summarizes the key steps of our allocation algorithm

from (BDG+21). We refer the reader to that partner paper for additional details.

Recall that our estimation procedure yields a Beta posterior distribution. Let (αk,βk) denote the parame-

ters of our posterior for type k. Let Fα,β be the CDF of a Beta distribution with parameters α and β. Then,

from (GF16), the optimistic gittins index λk for type k (with a 1-step lookahead window and a discount

factor γ) is the unique solution to the following equation,

λk =
αk

αk +βk
(1− γFαk+1,βk (λk)) + γλk (1−Fαk,βk (λk)) , (10)

which can be solved by bisection.

As discussed in Sec. 5.1, we perform certainty-equivalent updates to capture the likely reduction in the

variance of our posterior distributions. Specifically, after allocating a single additional test to type k, we

expect to observe a positive result with probability r̂EB(t, k) and a negative result with probability 1-r̂EB(t, k)

in at most 48 hours. Consequently, after allocating a test, we update the parameters of our Beta distribution

with this expected result, i.e., α̂k← α̂k+ r̂EB(t, k), and β̂k← β̂k+1− r̂EB(t, k). Note that this CE update does

not change our estimate of the mean prevalence, but it does reduce the variance of our posterior distributions.

Let A(t, k, e) denote the number of scheduled type k arrivals at time t at port e. Further, let our testing

allocations of type k passengers on day t at port of entry e be denoted by n(t, k, e). These allocations must

additionally satisfy constraints on testing budgets and arrivals. Specifically,∑
k∈K

n(t, k, e)≤ be ∀e∈ E , (11)

ensuring that the total number of allocated tests does not exceed the budget at each port of entry e∈ E , and

n(t, k, e)≤A(t, k, e) ∀e∈ E , (12)
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ensuring that the number of allocated tests for passengers of type k does not exceed the number of arriving

type k passengers at every port of entry e.

Once our bandit algorithm identifies a passenger type to test, we must choose a specific port of entry at

which to allocate the test; this decision affects where testing budget is consumed. We employ a simple greedy

heuristic. Specifically, if type k currently has the highest optimistic gittins index, we choose a passenger of

type k at the port of entry with the most remaining tests available. In other words, we preferentially allocate

tests at less constrained ports, with the goal of potentially saving tests for rare types at constrained ports.

When a port of entry’s budget is depleted, we remove that port of entry from consideration; similarly, if

all arrivals of a certain type have been assigned to be tested, we remove that type from consideration.

The pseudocode for the resulting algorithm is given in Algorithm 1 below.

Algorithm 1 Test Allocation

1: Input: Posterior distribution estimates
{
α̂k, β̂k

}
k∈Kt

for each type k, arrivals A(t, k, e) and budgets be

for each type k and port of entry e, number of pipeline tests Qk, discount factor γ

2: for k ∈Kt
3: Compute λk from Eq. (10) using α̂k, β̂k

4: λk← CE update index of type k (repeat Qk times) # account for pipeline tests

5: Yk←
∑

e
A(t, k, e) # type k passengers not yet allocated a test

6: for e∈ E

7: Yke←A(t, k, e) # type k passengers at port of entry e not yet allocated a test

8: Ce← be # remaining (un-allocated) tests at port of entry e

9: n(t, k, e)← 0 # initialize allocations

10: end

11: end

12: while maxeCe > 0 and maxk,e′∈{e|Ce>0} Yke′ > 0

13: k∗ = arg max{λk : Yk > 0}

14: e∗ = arg max{Ce : Yk∗e > 0}

15: n(t, k∗, e∗)← n(t, k∗, e∗) + 1 # allocate a test to a type k passenger at port of entry e

16: Ce∗←Ce∗ − 1, Yk∗e∗← Yk∗e∗ − 1, Yk∗← Yk∗ − 1

17: λk∗← CE update index of type k∗

18: end

19: return n(t, k, e)k∈Kt,e∈{1,...,E} # number of tests allocated to each type at each port of entry


