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Big data has enabled decision-makers to tailor decisions at the individual-level in a variety of domains

such as personalized medicine and online advertising. This involves learning a model of decision rewards con-

ditional on individual-specific covariates. In many practical settings, these covariates are high-dimensional ;

however, typically only a small subset of the observed features are predictive of a decision’s success. We

formulate this problem as a K-armed contextual bandit with high-dimensional covariates, and present a

new efficient bandit algorithm based on the LASSO estimator. We prove that our algorithm’s cumulative

expected regret scales at most poly-logarithmically in the covariate dimension d; to the best of our knowl-

edge, this is the first such bound for a contextual bandit. The key step in our analysis is proving a new tail

inequality that guarantees the convergence of the LASSO estimator despite the non-i.i.d. data induced by

the bandit policy. Furthermore, we illustrate the practical relevance of our algorithm by evaluating it on a

simplified version of a medication dosing problem. A patient’s optimal medication dosage depends on the

patient’s genetic profile and medical records; incorrect initial dosage may result in adverse consequences such

as stroke or bleeding. We show that our algorithm outperforms existing bandit methods as well as physicians

to correctly dose a majority of patients.

Key words : contextual bandits, adaptive treatment allocation, online learning, high-dimensional statistics,

LASSO, personalized decision-making

1. Introduction

The growing availability of user-specific data provides a unique opportunity for decision-makers

to personalize service decisions for individuals. In healthcare, doctors can personalize treatment

choices based on patient biomarkers and clinical history. For example, the BATTLE trial demon-

strated that the effectiveness of different chemotherapeutic agents on a cancer patient depends on

the molecular biomarkers found in the patient’s tumor biopsy; thus, personalizing the chemother-

apy regimen led to increased treatment success rates (Kim et al. 2011). Similarly, in marketing,

companies may achieve greater conversion rates by targeting advertisements or promotions based

on user demographics and search keywords. Personalization is typically achieved by (i) learning a

model that predicts a user’s outcome for each available decision as a function of the user’s observed

1



Author: Online Decision-Making with High-Dimensional Covariates
2 Article submitted to Operations Research; manuscript no. (Please, provide the mansucript number!)

covariates, and (ii) using this model to inform the chosen decision for subsequent new users (see,

e.g., He et al. 2012, Ban and Rudin 2014, Bertsimas and Kallus 2014, Chen et al. 2015).

However, the increased variety of potentially relevant user data poses greater challenges for

learning such predictive models because user covariates may be high-dimensional. For instance,

medical decision-making may involve extracting patient covariates from electronic health records

(containing information on lab tests, diagnoses, procedures, and medications) or genetic or molecu-

lar biomarker profiles. The resulting number of covariates in medical decision-making problems can

be as many as a few thousand (in Bayati et al. 2014) or tens of thousands (in Razavian et al. 2015).

Similarly, user covariates in web marketing are often high-dimensional since they include relevant

but fine-grained data on past clicks and purchases (Naik et al. 2008). Learning accurate predictive

models from high-dimensional data statistically requires many user samples. These samples are

often obtained through randomized trials on initial users, but this may be prohibitively costly in

the high-dimensional setting.

Predictive algorithms such as the LASSO (Chen et al. 1998, Tibshirani 1996) help alleviate

this issue by producing good estimates using far fewer user samples than traditional statistical

models (Candes and Tao 2007, Bickel et al. 2009, Bühlmann and Van De Geer 2011). In particular,

the LASSO identifies a sparse subset of predictive covariates, which is an effective approach for

treatment effect estimation in practice (Belloni et al. 2014, Athey et al. 2016). For example, the

BATTLE cancer trial found that only a few of many available patient biomarkers were predictive

of the success of any given treatment (Kim et al. 2011). Similarly, variable selection is often used

to predict Internet users’ click-through rates in online advertising (see e.g., Yan et al. 2014).

However, we must be careful not to sacrifice asymptotic performance when using such techniques.

They create substantial bias in our estimates to increase predictive accuracy for small sample sizes.

Thus, it is valuable to incorporate new observations and carefully tune the bias-variance tradeoff

over time to ensure good performance for both initial users (data-poor regime) and later users (data-

rich regime). This can be done online: after making a decision, we learn from the resulting reward,

e.g., how well a treatment performed on a patient, or the profit from an advertisement. This process

suffers from bandit feedback, i.e., we only obtain feedback for the chosen decision and we do not

observe (counterfactual) rewards for alternate actions. For example, we may incorrectly conclude

that a particular action is low-reward early on and discard it based on (uncertain) estimates; then,

we may never identify our mistake and perform poorly in the long-term since we will not observe

the counterfactual reward for this action without choosing it. Therefore, while we seek to leverage

our current estimates to optimize decisions (exploitation), we must also occasionally experiment

with each available action to improve our estimates (exploration).
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This exploration-exploitation tradeoff has been studied in the framework of contextual bandits

(Auer 2003, Langford and Zhang 2008). Although many algorithms have been proposed and ana-

lyzed in the literature, they typically optimize asymptotic performance (when the number of users

T grows large) and may not perform well in the data-poor regime. In particular, the performance of

all existing algorithms scales polynomially in the number of covariates d, and provide no theoretical

guarantees when the number of users T is of order d (see, e.g., Goldenshluger and Zeevi 2013),

even when the underlying model is known to be sparse (Abbasi-Yadkori et al. 2012). Thus, such

algorithms may essentially randomize on the initial O(d) individuals, which as discussed earlier,

may be prohibitively costly in high-dimensional settings.

In this paper, we propose a new algorithm (the LASSO Bandit) that addresses these shortcom-

ings. In particular, we adapt the LASSO estimator to the bandit setting and tune the resulting

bias-variance tradeoff over time to gracefully transition from the data-poor to data-rich regime. We

prove theoretical guarantees that our algorithm achieves good performance as soon as the number

of users T is poly-logarithmic in d, which is an exponential improvement over existing theory. Sim-

ulations confirm our theoretical results. Finally, we empirically demonstrate the potential benefit

of our algorithm in a medical decision-making context by evaluating it on the clinical task of war-

farin dosing with real patient data. In general, evaluating a bandit algorithm retrospectively on

data is challenging because we require access to counterfactuals; we choose warfarin dosing as our

case study since this unique dataset gives us access to such counterfactuals under some simplify-

ing assumptions. We find that our algorithm significantly outperforms other bandit methods, and

outperforms the benchmark policy used in practice by physicians after observing 200 patients. In

particular, the LASSO Bandit successfully leverages limited available data to make better decisions

for initial patients, while continuing to perform well in the data-rich regime.

1.1. Main Contributions

We introduce the LASSO Bandit, a new statistical decision-making algorithm that efficiently lever-

ages high-dimensional user covariates in the bandit setting by learning LASSO estimates of decision

rewards. Below we highlight our contributions in three categories.

Algorithm. Our algorithm builds on an existing algorithm in the low-dimensional bandit setting

by Goldenshluger and Zeevi (2013) that uses ordinary least squares estimation. We use LASSO

estimation in the high-dimensional setting, which introduces the key additional step of selecting

a regularization path. We specify such a path to optimally control the convergence of our LASSO

estimators by trading off bias and variance over time.

Theory. We measure performance using the standard notion of expected cumulative regret, which

is the total expected deficit in reward achieved by our algorithm compared to an oracle that knows
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all the problem parameters. Our main result establishes that the LASSO Bandit asymptotically

achieves expected cumulative regret that scales poly-logarithmically with the dimension of the

covariates. The technical challenge is that the bandit policy induces non-i.i.d. samples from each

arm during the exploitation phase. In particular, even though the sequence of all covariates are

i.i.d. samples from a fixed distribution, the subset of covariates for which the outcome of a fixed

arm is observed may not be i.i.d. In low-dimensional settings, this is typically addressed using

martingale matrix Chernoff inequalities (Tropp 2015). We prove analogous results in the high-

dimensional setting for the convergence of the LASSO estimator using matrix perturbation theory

and martingale concentration results. In particular, we prove a new tail inequality for the LASSO

(that may be of independent interest) which holds with high probability even when an unknown

portion of the samples are generated by a non-i.i.d. process.

We further derive an optimal specification for the LASSO regularization parameters, and prove

that the resulting cumulative regret of the LASSO Bandit over T users is at most O
(
s20 [logT +

logd]2
)
, where s0� d is the number of relevant covariates. To the best of our knowledge, the LASSO

Bandit achieves the first regret bound that scales poly-logarithmically in both d and T , making it

suitable for leveraging high-dimensional data without experimenting on a large number of users.

As a secondary contribution, our techniques can also be used to improve existing regret bounds

in the low-dimensional setting by a factor of d for the OLS Bandit (a variant of the algorithm by

Goldenshluger and Zeevi (2013)) under the same problem setting and weaker assumptions.

Empirics. We compare the performance of the LASSO Bandit against existing algorithms in the

bandit literature. Simulations on synthetic data demonstrate that the LASSO Bandit significantly

outperforms these alternatives in cumulative regret. Surprisingly, we find that our algorithm can

significantly improve upon these baselines even in “low-dimensional” settings.

More importantly, we evaluate the potential value of our algorithm in a medical decision-making

context using a real patient dataset on warfarin (a widely-prescribed anticoagulant). Here, we apply

the LASSO Bandit to learn an optimal dosing strategy using patients’ clinical and genetic factors.

We show that our algorithm significantly outperforms existing bandit algorithms to correctly dose

a majority of patients. Furthermore, our algorithm outperforms the current benchmark policy used

in practice by physicians after observing 200 patients. Finally, we evaluate the trade-off between

increased patient risk and improved dosing, and find that our algorithm increases the risk of

incorrect dosing for a small number of patients in return for a large improvement in average dosing

accuracy. We note that we do not take advantage of certain information structures that are specific

to the warfarin dosing problem (see §5 for details); exploiting this structure could potentially result

in even better algorithms tailored specifically for warfarin dosing, but developing such an algorithm

is beyond the scope of our paper.
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1.2. Related Literature

As discussed earlier, there is a significant OR/MS literature on learning predictive models from

historical data, and using such models to inform context-specific decision-making (e.g., Ban and

Rudin 2014, Bertsimas and Kallus 2014). In contrast, our work addresses the problem of learning

these predictive models online under bandit feedback (i.e., we only observe feedback for the chosen

decision, as is often the case in practice), which results in an exploration-exploitation trade-off.

There is a rich literature on the exploration-exploitation tradeoff in the contextual bandit frame-

work (also known as contextual bandits or linear bandits with changing action space) from OR/MS,

computer science, and statistics. One approach is to make no parametric assumptions on arm

rewards. For example, Slivkins (2014), Perchet and Rigollet (2013) and Rigollet and Zeevi (2010)

analyze settings where the arm rewards are given by any smooth, non-parametric function of

the observed covariates. However, these algorithms perform very poorly in high dimension as the

cumulative regret depends exponentially on the covariate dimension d.

Thus, much of the bandit literature (including the present paper) has focused on the case

where the arm rewards are linear functions of the covariates; this setting was first introduced

by Auer (2003) and was subsequently improved by UCB-type algorithms by Dani et al. (2008),

Rusmevichientong and Tsitsiklis (2010), Chu et al. (2011), Abbasi-Yadkori et al. (2011) and Desh-

pande and Montanari (2012). (Note that some of these papers study the linear bandit, which is

different from a contextual bandit; however, the theoretical guarantees of a linear bandit can be

mapped to theoretical guarantees for a contextual bandit if the feasible action set for the lin-

ear bandit is allowed to change exogenously over time (Abbasi-Yadkori 2012).) These algorithms

use the idea of optimism-in-the-face-of-uncertainty (OFU), which elegantly solves the exploration-

exploitation tradeoff by maintaining confidence sets for arm parameter estimates and choosing

arms optimistically from within these confidence sets. Follow-up work demonstrated that similar

guarantees can be achieved using a posterior sampling algorithm (Agrawal and Goyal 2013, Russo

and Van Roy 2014b). We also note that Carpentier and Munos (2012) tackle a linear bandit in the

high-dimensional sparse setting but they use a non-standard definition of regret and also do not

consider the relevant case where the action set changes over time.

However, this literature typically does not make any assumptions on how the user covariates Xt

are generated. In particular, they allow for arbitrarily constructed covariate sequences that may

be generated by an adversary to make learning difficult; Chapter 3 of Bubeck and Cesa-Bianchi

(2012) provides a detailed survey of “adversarial bandits”. For example, if Xt is equal to a fixed

vector X that does not change over time, it is impossible to learn more than one parameter per

arm. This may explain why the current-best cumulative regret bounds are given by: O(d
√
T )
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in the low-dimensional setting (Dani et al. 2008, Abbasi-Yadkori et al. 2011) and O(
√
ds0T ) in

the high-dimensional sparse setting (Abbasi-Yadkori et al. 2012). Note that such algorithms still

achieve regret that is polynomial in d and T , implying slow rates of convergence. In particular,

when T =O(d) (the regime of of interest here), these regret bounds are no longer sublinear in T .

Remark 1. Several of the above-mentioned papers also have “problem-dependent” bounds that

scale as O(logT ) for the linear bandit (see, e.g., Abbasi-Yadkori et al. 2011). These bounds only

apply when there is a fixed constant gap between the mean rewards of any pair of arms; they do

not apply to a contextual bandit since there is no such constant gap. In our setting, the mean

rewards of arm i and j can be arbitrarily close as a function of the observed covariates Xt at time

t. We remark further on this point in §2.1.

Yet, assuming covariate sequences can be selected completely arbitrarily constitutes a pessimistic

environment that is unlikely to occur in practical settings. For example, in healthcare, the treatment

choices made for one patient do not directly affect the health status of the next patient, suggesting

that covariates are roughly i.i.d. Thus, we focus on the case where covariates are generated i.i.d.

from an unknown fixed distribution, where we can achieve exponentially better regret bounds.

This insight was first noted by Goldenshluger and Zeevi (2013), who presented a novel algorithm

that carefully trades off between a biased and an unbiased arm parameter estimate; as a result,

they prove a corresponding upper bound of O(d3 logT ) on cumulative regret, which significantly

improves the O(d
√
T ) bound for arbitrary covariate sequences as T grows large. We adapt this

idea to the high-dimensional setting using LASSO estimators. However, we require a much tighter

regret analysis as well as new convergence results on LASSO estimators, which we use to prove

a regret bound of O(s20[logT + logd]2). Note that we relax the polynomial dependence on d to

a poly-logarithmic factor by leveraging sparsity. As a consequence of our new proof technique,

we also improve the regret bound in the low-dimensional setting from O(d3 logT ) (Goldenshluger

and Zeevi 2013) to O
(
d2 log

3
2 d · logT

)
. These results hold while allowing for some arms to be

uniformly sub-optimal; in contrast, the formulation in Goldenshluger and Zeevi (2013) requires the

assumption that every arm is optimal for some subset of users.

Remark 2. It is worth comparing both bounds in the low-dimensional setting where all covariates

are relevant, i.e., s0 = d. In this setting, we show that the OLS Bandit achieves O
(
d2 log

3
2 d · logT

)
regret, while the LASSO Bandit achieves a slightly worse upper bound of O(d2[logT + logd]2)

regret. This difference arises from the weaker convergence results established for the LASSO as

opposed to the least squares estimator (see §4). However, when s0 � d (as is often the case in

practical high-dimensional settings), the LASSO Bandit can achieve exponentially better regret

(in the ambient dimension d) by leveraging sparse structure.
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Past theoretical analysis of high-dimensional bandits has not used LASSO techniques. In par-

ticular, Carpentier and Munos (2012) use random projections, Deshpande and Montanari (2012)

use `2-regularized regression, and Abbasi-Yadkori et al. (2012) use SeqSEW. Our proofs rely on

existing literature on oracle inequalities that guarantee convergence of LASSO estimators (Candes

and Tao 2007, Bickel et al. 2009, Negahban et al. 2012, Bühlmann and Van De Geer 2011); a

technical contribution of our work is proving a new LASSO tail inequality that can be used on

non-i.i.d. data induced by the bandit policy, which may be of independent interest.

There has also been interest in posterior sampling and information-directed sampling methods

(Russo and Van Roy 2014a,b), which show evidence of improved empirical performance on standard

bandit problems. These algorithms do not yet have theoretical guarantees for our setting that

are competitive with existing bounds described above. Developing algorithms of this flavor and

corresponding regret bounds for our setting may be a promising avenue for future work.

Finally, our paper is also related to recent papers in the operations management literature at the

intersection of machine learning and multi-armed bandits. Kallus and Udell (2016) use low-rank

matrix completion for dynamic assortment optimization with a large number of customers, and

Elmachtoub et al. (2017) introduce a novel bootstrap-inspired method for performing Thompson

sampling using decision trees. In contrast, our work focuses on developing provable guarantees for

bandits with covariates under the LASSO estimator; to that end, we introduce new theoretical

results for the LASSO with adapted sequences of (possibly non-i.i.d) observations.

The remainder of the paper is organized as follows. We describe the problem formulation and

assumptions in §2. We present the LASSO Bandit algorithm and our main result on the algorithm’s

performance in §3; the key steps of the proof are outlined in §4. Finally, empirical results on

simulated data as well as our evaluation on real patient data for the task of warfarin dosing are

presented in §5. All proofs, robustness checks, and our secondary result in the low-dimensional

setting are relegated to the appendices.

2. Problem Formulation

We now describe the standard problem formulation for a bandit with covariates and linear arm

rewards (as introduced by Auer (2003) and others). We start by introducing some notation that

will be used throughout the paper.

Notation. For any integer n, we will let [n] denote the set {1, ..., n}. For any index set I ⊂ [d],

and a vector β ∈Rd, let βI ∈Rd be the vector obtained by setting the elements of β that are not

in I to zero. For a vector v ∈ Rm, let the support of v (denoted supp(v)) to be the set of indices

corresponding to nonzero entries of v. For any vector X or matrix X, the infinity norm (i.e., ‖ ·‖∞)
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is the maximum absolute value of its entries. We also use R+ and Z+ to refer to positive reals and

integers respectively, and use Rd×d�0 for the set of d by d positive semidefinite matrices.

Let T be the number of (unknown) time steps; at each time step, a new user arrives and we

observe her individual covariates Xt. The observed sequence of covariates {Xt}t≥1 are random

vectors that are drawn i.i.d. from a distribution PX over a deterministic set X ⊂Rd (see Remark 3

for a precise definition). The decision-maker has access to K arms (decisions) and each arm yields

an uncertain user-specific reward (e.g., patient outcome or profit from a user conversion). Each

arm i has an unknown parameter βi ∈Rd. At time t, if we pull arm i∈ [K], we yield reward

X>t βi + εi,t ,

where the εi,t are independent σ-subgaussian random variables (see Definition 1 below) that are

also independent of the sequence {Xt′}t′≥1. In §EC.6.3, we numerically show how our approach can

be used even when the reward is a nonlinear function of the covariates by using basis expansion

methods from statistical learning to approximate nonlinear functions.

Definition 1. A real-valued random variable z is σ-subgaussian if E[etz]≤ eσ2t2/2 for every t∈R.

This definition implies E[z] = 0 and Var[z] ≤ σ2. Many classical distributions are subgaussian;

typical examples include any bounded, centered distribution, or the normal distribution. Note that

the errors need not be identically distributed.

Remark 3. The reward function contains two stochastic sources: the covariate vector Xt and the

noise. Therefore, we define the precise notion of the probability space. Each Xt is a H-measurable

vector-valued function on probability space (ΩX ,HX ,PrX). We also refer to the distribution that

Xt induces on Rd by PX , i.e., for any Borel set A of Rd we have PrX(Xt ∈A) =PX(A). Similarly,

each noise εi,t is a real-valued random variable with probability space (Ωε,Hε,Prε). Throughout

the paper all probabilities and expectations are with respect to the product measure PrX ×Prε. To

simplify notation, we will use E and Pr to refer to “expectation” and “probability” with respect

to this product measure, unless the probability measure is specified as a subindex.

Our goal is to design a sequential decision-making policy π that learns the arm parameters {βi}

over time in order to maximize expected reward for each individual. Let πt ∈ [K] denote the arm

chosen by policy π at time t∈ [T ]. We compare ourselves to an oracle policy π∗ that already knows

the {βi} (but not the noise ε) and thus always chooses the best expected arm π∗t = maxj(X
>
t βj).

Thus, if we choose arm πt = i at time t, we incur expected regret

rt ≡E
[
max
j

(X>t βj)−X>t βi
]
,
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which is simply the difference in expected reward between π∗t and πt. We seek a policy π that

minimizes the cumulative expected regret RT ≡
∑T

t=1 rt. In particular, if RT is small for policy π,

then the performance of π is similar to that of the oracle.

We additionally introduce the sparsity parameter s0 ∈ [d], which is the smallest integer such that

for all i ∈ [K], we have ‖βi‖0 ≤ s0. (Note that this is trivially satisfied for s0 = d.) Our algorithm

has strong performance guarantees when s0� d, i.e., when the arm rewards are determined by

only a small subset (of size s0) of the d observed user-specific covariates in X.

2.1. Assumptions

We now describe the assumptions we require on the problem parameters for our regret analysis.

These assumptions are adapted from the bandit literature and will be attributed in the text below.

For simplicity, we introduce a specific example and show how each assumption translates to the

example. Later, we describe more generic examples that are encompassed by our formulation.

Simple Example: Let the induced probability distribution of covariates, PX , be the uniform

distribution over the d-dimensional unit cube [0,1]d. Consider three arms whose corresponding arm

parameters are given by β1 = (1,0, ...,0), β2 = (0,1,0, ...,0), and β3 = (1/4,1/4,0, ...,0).

Assumption 1 (Parameter set). There exist positive constants xmax and b such that ‖x‖∞ ≤

xmax for all x ∈ X and ‖βi‖1 ≤ b for all i ∈ [K]. The former implies that any realization of the

random variable Xt satisfies ‖Xt‖∞ ≤ xmax for all t.

Our first assumption is that the observed covariate vector Xt as well as the arm parameters βi are

bounded. This is a standard assumption made in the bandit literature (see, e.g., Rusmevichientong

and Tsitsiklis 2010), ensuring that the maximum regret at any time step is bounded, i.e., all

realizations of Xt satisfy |X>t βi| ≤ bxmax by Cauchy-Schwarz for dual norms ‖ · ‖∞ and ‖ · ‖1 on Rd.

This is likely satisfied since user covariates and outcomes are bounded in practice. Our example

clearly satisfies this assumption with xmax = 1 and b= 1.

Assumption 2 (Margin condition). There exists a constant C0 ∈ R+ such that for all i and j

in [K] where i 6= j, Pr [ 0< |X> (βi−βj) | ≤ κ]≤C0κ for all κ∈R+.

Our second assumption is a margin condition that ensures that the density of the covariate dis-

tribution PX should be bounded near a decision boundary, i.e., the intersection of the hyperplane

given by
{
x>βi = x>βj

}
and X for any i 6= j ∈ [K]. (Note that the distribution of PX can be such

that point masses on the decision boundary are allowed.) This assumption was introduced in the

classification literature by Tsybakov (2004) and highlighted in a bandit setting by Goldenshluger

and Zeevi (2013). Intuitively, even small errors in our parameter estimates can cause us to choose
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the wrong action (between arms i and j) for a realization of the covariate vector Xt close to the

decision boundary since the rewards for both arms are nearly equal. Thus, we can perform poorly

if a disproportionate fraction of observed covariate vectors are drawn near these hyperplanes. Since

the uniform distribution has a bounded density everywhere in the simple example above, this

assumption is satisfied; a simple geometric argument yields C0 = 2
√

2.

Assumption 3 (Arm optimality). Let Kopt and Ksub be mutually exclusive sets that include all

K arms. Then there exists some h > 0 such that: (a) sub-optimal arms i ∈ Ksub satisfy x>βi <

maxj 6=i x
>βj − h for every x ∈ X ; and (b) for a constant p∗ > 0, each optimal arm i ∈ Kopt has a

corresponding set

Ui ≡
{
x∈X

∣∣∣ x>βi >max
j 6=i

x>βj +h

}
,

such that mini∈Kopt Pr [X ∈Ui]≥ p∗.

Our third assumption is a less restrictive version of an assumption introduced in Goldenshluger

and Zeevi (2013). In particular, we assume that our K arms can be split into two sets:

a. Sub-optimal arms Ksub that are strictly sub-optimal for all covariate vectors in X , i.e., there

exists a constant hsub > 0 such that for each i ∈ Ksub, x>βi < maxj 6=i x
>βj − hsub for every

x∈X .

b. A non-empty set of optimal arms Kopt that are strictly optimal with positive probability for

some covariate vectors x ∈ X , i.e., there exists a constant hopt > 0 and some region Ui ⊂ X

(with Pr[X ∈Ui] = pi > 0) for each i∈Kopt such that x>βi >maxj 6=i x
>βj+hopt for all covariate

vectors x in Ui.

In other words, we assume that every arm is either optimal (by a margin hopt) for some users

(Assumption 3b), or sub-optimal (by a margin hsub) for all users (Assumption 3a). For simplicity,

in Assumption 3, we define the localization parameter h = min{hopt, hsub} and p∗ = mini∈Kopt pi.

By construction, the regions Ui are separated from all decision boundaries (by at least h in reward

space); thus, intuitively, small errors in our parameter estimates are unlikely to make us choose

the wrong arm under the event X ∈ Ui for some i ∈ Kopt. Thus, we will play each optimal arm

i ∈ Kopt at least p∗ T times in expectation with high probability (i.e., whenever the event X ∈ Ui
occurs). This ensures that we can quickly learn accurate parameter estimates for all optimal arms

over time. We will discuss the choice of h later (see Remark 8 and Appendix EC.6.2).

In our simple example, one can easily verify that Kopt = {β1, β2} and Ksub = {β3}. We can choose

any value h∈ (0,1/2] with corresponding p∗ = (1−h
√

2)2 for this setting.

Remark 4. We emphasize that Assumption 3 differs from the “gap” assumption made in problem-

dependent bounds in the bandit literature (see, e.g., Abbasi-Yadkori et al. 2011), which assumes
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that there exists some gap ∆> 0 between the rewards of the optimal arm i∗ and the next best arm,

i.e., ∆≤minj, x∈X x
>(βi∗−βj). In a general contextual bandit, no ∆> 0 satisfies the gap assumption

since the user covariate vector X can be drawn arbitrarily close to the decision boundary for some

βk (i.e., arbitrarily close to the set {x∈X | x>βi∗ = x>βk}). Rather, Assumption 3 posits that such

a gap exists (∆ = h) only with some probability p∗ > 0. While the “gap” assumption does not

hold for most covariate distributions (e.g., uniform), our assumption holds for a very wide class of

continuous and discrete covariate distributions (as we will discuss below).

We state a definition for our final assumption, which is drawn from the high-dimensional statistics

literature (Bühlmann and Van De Geer 2011).

Definition 2 (Compatibility condition). For any set of indices I ⊆ [d] and a positive and

deterministic constant φ, define the set of matrices

C(I,φ)≡
{
M ∈Rd×d�0 | ∀v ∈Rd s.t. ‖vIc‖1 ≤ 3‖vI‖1, we have ‖vI‖21 ≤ |I| (v>Mv)/φ2

}
.

Assumption 4 (Compatibility condition). There exists a constant φ0 > 0 such that for each

i∈Kopt, Σi ∈ C(supp(βi), φ0), where we define Σi ≡E [XX> |X ∈Ui].

Our fourth and final assumption concerns the covariance matrix1 of samples restricted to the

regions Ui for each i ∈ Kopt. In particular, we require that Σi ≡ EX∼PX [XX> |X ∈Ui] belongs to

the set C(supp(βi), φ0) with some constant φ0 > 0 (Definition 2). This assumption is required for

the identifiability of LASSO estimates trained on samples X ∈ Ui (Candes and Tao 2007, Bickel

et al. 2009, Negahban et al. 2012, Bühlmann and Van De Geer 2011). As we discussed earlier in

Assumption 3, for each i∈Kopt, we expect to play arm i at least p∗T =O(T ) times based on samples

X ∈Ui. The compatibility condition ensures that a LASSO estimator trained on these samples will

converge to the true parameter vector βi with high probability as the number of samples grows to

infinity. We will discuss the LASSO estimator and its convergence properties in detail in §3.1.

Note that a standard assumption in ordinary least squares (OLS) estimation is that the matrix

Σi be positive-definite, i.e., λmin (Σi)> 0. It can be easily verified that if Σi is positive-definite, then

it belongs to C(I,
√
λmin (Σi)) for any set I ⊆ [d]. Thus, the compatibility condition is weaker than

the requirement that Σi be positive-definite.

In our example, the eventsX ∈Ui (defined by any allowable choice of h∈ (0,1/2]) for each i∈Kopt
have positive probability, and the matrices Σi are positive definite. Note that smaller choices of

h (which can generally be chosen arbitrarily close to zero) result in larger sets Ui by definition,

and therefore yield larger values of λmin (Σi). For example, h= 0.1 corresponds to λmin(Σi)≈ 0.01.

Thus, the covariance matrices Σi also satisfy the compatibility condition.

1 Throughout the paper, the “covariance matrix” of X refers to the matrix E[XX>], even when E[X] 6= 0.
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Remark 5. Throughout the proof, we will study events of type {M /∈ C(supp(β), φ)} for appropri-

ate β, φ, random (sample-covariance) matrices M , and find upper bounds for their probabilities.

These events are clearly measurable since they can be written as intersections of countably many

measurable sets. Specifically, for any vector v ∈Rd that satisfies ‖vIc‖1 ≤ 3‖vI‖1, the function Gv

that sends a random matrix M to |I|v>Mv/φ2−‖vI‖21 is measurable; consequently G−1v ([0,∞)) is

also measurable. Since |I|v>Mv/φ2−‖vI‖21 and ‖vIc‖1−3‖vI‖1 are both continuous in v, and using

the fact that any vector v can be approximated with arbitrary accuracy with a rational vector in

Rd, the event {M /∈ C(supp(β), φ)} can be written as a countable intersection of measurable sets

of the form G−1u ([0,∞)) for all rational u∈Rd satisfying ‖uIc‖1 ≤ 3‖uI‖1.

Finally, we give a few more examples of settings that satisfy all four of our assumptions.

Discrete Covariates: In many applications, the covariate vector may have discrete rather than

continuous coordinates. It is easy to verify that our assumptions are satisfied for any discrete

distribution with finite support, as long as its support does not lie in a hyperplane. For instance,

we can take the probability distribution PX over covariate vectors to be any discrete distribution

over the vertices of the d-dimensional unit cube {0,1}d. Note that Assumption 2 is still satisfied

because all the vertices lie on the decision boundary (where x>β1 = x>β2) or are separated from

this boundary by at least a constant distance. In fact, any discrete distribution over a finite number

of points satisfies Assumption 2.

Generic Example: We now describe a generic example that satisfies all the above assumptions.

Consider a bounded set X in Rd (Assumption 1). We call some coordinates “continuous” (all

possible realizations x ∈X take on continous values along these coordinates) and some “discrete”

(all possible realizations x∈X take on a finite number of values along these coordinates). Assume

further that Assumption 2 holds (e.g., if PX is the product measure for a distribution of continuous

and discrete coordinates, then the distribution of continuous coordinates has a bounded density

and the probability of each value for the discrete coordinates is positive). These conditions are met

by most distributions in practice. Next, we impose that no arm lies on the edge of the convex hull of

all K arms (Assumption 3), i.e., every arm is either a vertex (optimal locally) or is contained inside

the convex hull (sub-optimal everywhere). (Note that if the arm parameters are randomly selected

from a uniform distribution on {β ∈ Rd | ‖β‖∞ ≤ b}, this condition would hold with probability

one.) Finally, we assume that with large enough probability, the covariates are linearly independent

on each Ui so that the covariance matrix Σi is positive-definite (Assumption 4).

3. LASSO Bandit Algorithm

We begin by providing some brief intuition about the LASSO Bandit algorithm. Our policy pro-

duces LASSO estimates β̂i for the parameter of each arm i∈ [K] based on past samples Xt where
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arm i was played. A typical approach for addressing the exploration-exploitation tradeoff is to

forced-sample each arm at prescribed times; this produces i.i.d. data for unbiased estimation of the

arm parameters, which can then be used to play myopically at all other times (i.e., choose the best

arm based on current estimates). However, such an algorithm will provably incur at least Ω(
√
T )

regret since we will require many forced-samples for the estimates to converge fast enough.

Instead, our estimates may converge faster if we use all past samples (including non-i.i.d. samples

from myopic play) from arm i to estimate βi. However, since these samples are not i.i.d., standard

convergence guarantees for LASSO estimators do not apply and we cannot ensure that the esti-

mated parameters β̂i converge to the true parameters βi. We tackle this by adapting an idea from

the low-dimensional bandit algorithm by Goldenshluger and Zeevi (2013), i.e., maintaining two

sets of estimators for each arm: (i) forced-sampling estimates trained only on forced-samples, and

(ii) all-sample estimates trained on all past samples when arm i was played. The former estimator

is trained on i.i.d. samples (and therefore has convergence guarantees) while the latter estimator

has the advantage of being trained on a much larger sample size (but naively, has no convergence

guarantees). The LASSO Bandit uses the forced-sampling estimator in a pre-processing step to

select a subset of arms; it then uses the all-sample estimator to choose the estimated best arm

from this subset. We prove that using the forced-sampling estimator for the pre-processing step

guarantees convergence of the all-sample estimator. A key novel ingredient of our algorithm is spec-

ifying the regularization paths to control the convergence of our LASSO estimators by carefully

trading off bias and variance over time. Intuitively, we build low-dimensional linear models in the

data-poor regime by limiting the number of allowed covariates; this allows us to make reasonably

good decisions even with limited data. As we collect more data, we allow for increasingly complex

models (consisting of more covariates), eventually recovering the standard OLS model.

Additional notation. Let the design matrix X be the T×dmatrix whose rows areXt. Similarly,

let Yi be the length T vector of observations X>t βi + εi,t. Since we only obtain feedback when arm

i is played, entries of Yi may be missing. We define the all-sample set Si = {t | πt = i} ⊂ [T ] for

arm i as the set of times when arm i was played. For any subset S ′ ⊂ [T ], let X(S ′) be the |S ′|×d
sub-matrix of X whose rows are Xt for each t∈ S ′. Similarly, when S ′ ⊂Si, let Yi(S ′) be the length

|S ′| vector of corresponding observed rewards Yi(t) for each t ∈ S ′. Since πt = i for each t ∈ S ′,
Yi(S ′) has no missing entries. Lastly, for any matrix Z ∈ Rn×d, let Σ̂(Z) = Z>Z/n be its sample

covariance matrix. For any subset A⊂ [n], we use the short notation Σ̂(A) to refer to Σ̂(Z(A)).

3.1. LASSO Estimation

Consider a linear model Y = Xβ + ε, with design matrix X ∈ Rn×d, response vector Y ∈ Rn, and

noise vector ε∈Rn whose entries are independent σ-subgaussian random variables. We define the

LASSO estimator for estimating the parameter β (with ‖β‖0 = s0):
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Definition 3 (LASSO). Given a regularization parameter λ≥ 0, the LASSO estimator is

β̂X,Y (λ)≡ arg min
β′

{
‖Y −Xβ′‖22

n
+λ‖β′‖1

}
. (1)

The LASSO estimator satisfies the following tail inequality.

Proposition 1 (LASSO Tail Inequality for Adapted Observations). Let Xt denote the tth

row of X and Y (t) denote the tth entry of Y . The sequence {Xt : t = 1, ..., n} forms an adapted

sequence of observations, i.e., Xt may depend on past regressors and their resulting observations

{Xt′ , Y (t′)}t−1t′=1. Also, assume that all realizations of random vectors Xt satisfy ‖Xt‖∞ ≤ xmax. Then

for any φ> 0 and χ> 0, if λ= λ(χ,φ)≡ χφ2/(4s0), we have

Pr
[
‖β̂X,Y (λ)−β‖1 >χ

]
≤ 2exp[−C1(φ)nχ2 + logd] + Pr

[
Σ̂(X) /∈ C(supp(β), φ)

]
,

where C1(φ)≡ φ4/(512s20σ
2x2

max).

Remark 6. Note that the convergence rate χ and compatibility condition parameter φ determine

the regularization parameter λ(χ,φ); this will be reflected in the choice of regularization param-

eters in our algorithm, and is further discussed in Remark 7. Therefore, when we say “choosing

regularization parameter λ”, it is implicitly assumed that the parameter χ is selected appropriately.

Proposition 1 is a more general version of the standard LASSO oracle inequality (e.g., see Theorem

6.1 in Bühlmann and Van De Geer (2011)). Our version allows for adapted sequences of observations

and errors that are σ-subgaussian conditional on all past observations. The result follows from

modifying the proof of the standard LASSO oracle inequality2 using martingale theory and is

provided in Appendix EC.1.

LASSO for the bandit setting. Returning to our original problem, we consider the task of

estimating the parameter βi for each arm i∈ [K]. Using any subset of past samples S ′ ⊂Si where

arm i was played and any choice of parameter λ, we can use the corresponding LASSO estimator

β̂X(S′),Y (S′),λ, which we denote by the simpler notation β̂(S ′, λ), to estimate βi. In order to prove

regret bounds, we need to establish convergence guarantees for such estimates. From Proposition

1, in order to bound the error ‖β̂(S ′, λ)−βi‖1 for each arm i∈ [K], we need to (i) ensure with high

probability Σ̂(S ′)∈ C(supp(βi), φ) for some constant φ and (ii) appropriately choose parameters λ

over time to control the rate of convergence. Thus, the main challenge in the algorithm and analysis

is constructing and maintaining sets S ′ such that with high probability Σ̂(S ′) ∈ C(supp(βi), φ)

(although the rows of X(S ′) are not i.i.d.) with sufficiently fast convergence rates.

2 “Oracle inequality” refers to the fact that the LASSO achieves the same accuracy ‖β̂X,Y (λ)−β‖1 (up to logarithmic
factors) compared to an oracle that knows supp(β) in advance (see Chapter 6 of Bühlmann and Van De Geer (2011)).
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3.2. Description of Algorithm

The LASSO Bandit takes as input the forced sampling parameter q ∈Z+ (which is used to construct

the forced-sample sets), a localization parameter h> 0 (defined in Assumption 3)3, as well as initial

regularization parameters λ1, λ2,0. These parameters will be specified in Theorem 1.

Forced-Sample Sets: We prescribe a set of times when we forced-sample arm i (regardless of

the observed covariates Xt):

Ti ≡
{

(2n− 1) ·Kq+ j
∣∣∣ n∈ {0,1,2, ...} and j ∈ {q(i− 1) + 1, q(i− 1) + 2, ..., qi}

}
. (2)

Thus, the set of forced samples from arm i up to time t is Ti,t ≡Ti ∩ [t], with size O(q log t).

All-Sample Sets: As before, let Si,t =
{
t′
∣∣ πt′ = i and 1≤ t′ ≤ t

}
denote the set of times we

play arm i up to time t. Note that by definition Ti,t ⊂Si,t.

At any time t, the LASSO Bandit maintains two sets of parameter estimates for each βi:

1. the forced-sample estimate β̂(Ti,t−1, λ1) based only on forced samples observed from arm i,

2. the all-sample estimate β̂(Si,t−1, λ2,t) based on all samples observed from arm i.

Execution: If the current time t is in Ti for some arm i, then arm i is played. Otherwise, two

actions are possible. First, we use the forced-sample estimates to find the highest estimated reward

achievable across all K arms. We then select the subset of arms K̂ ⊂ [K] whose estimated rewards

are within h/2 of the maximum achievable. After this pre-processing step, we use the all-sample

estimates to choose the arm with the highest estimated reward within the set K̂.

Algorithm LASSO Bandit

Input parameters: q,h,λ1, λ2,0

Initialize Ti,0 and Si,0 by the empty set, and β̂(Ti,0, λ1) and β̂(Si,0, λ2,0) by 0 in Rd for all i in [K]
Use q to construct force-sample sets Ti using Eq. (2) for all i in [K]
for t∈ [T ] do

Observe user covariates Xt ∼PX
if t∈ Ti for any i then

πt← i (forced-sampling)
else
K̂=

{
i∈ [K]

∣∣ X>t β̂(Ti,t−1, λ1)≥maxj∈[K]X
>
t β̂(Tj,t−1, λ1)−h/2

}
is the set of near-

optimal arms according to the forced-sample estimators
πt← arg maxi∈K̂X

>
t β̂(Si,t−1, λ2,t−1) is the best arm within K̂ according to the all-sample

estimators
end if

Update all-sample sets Sπt,t←Sπt,t−1 ∪{t} and regularization λ2,t← λ2,0

√
log t+logd

t

Play arm πt, observe Y (t) =X>t βπt + εi,t
end for

3 Note that if some h̄ satisfies Assumption 3, then any h∈ (0, h̄] also satisfies the assumption. Therefore, a conserva-
tively small value can be chosen in practice, but this will be reflected in the constant in the regret bound.
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Remark 7. The choices of regularization parameters λ1 and λ2,t are motivated by the following

rough intuition. In Proposition 1, the regularization parameter impacts two quantities: the size

of the error χ, and the probability of error exp[−C1nχ
2 + logd]. (Note that it does not affect the

term Pr
[
Σ̂(X) /∈ C(supp(β), φ)

]
.) For our regret analysis of the forced sample estimator, it suffices

to keep the estimation error χ under h/(4xmax) with as high a probability as possible; this can

be achieved by taking λ1 to be a constant. In contrast, for the all-sample estimator we wish to

maintain both small estimation error χ, as well as a small probability of error; the above recipe for

λ2,t trades these two terms nearly equally by guaranteeing the probability of error to be of order

1/
√
t and estimation error χ to be of order

√
log(t)/t.

3.3. Main Result: Regret Analysis of LASSO Bandit

Our main result establishes that the LASSO Bandit asymptotically achieves expected cumulative

regret that scales logarithmically with the dimension of covariates:

Theorem 1. When q ≥ 4dq0e, K ≥ 2, d > 2, t ≥ C5, and we take λ1 = (φ2
0p∗h)/(64s0xmax) and

λ2,0 = [φ2
0/(2s0)]

√
1/(p∗C1), we have the following (non-asymptotic) upper bound on the expected

cumulative regret of the LASSO Bandit at time T by:

RT ≤C3 (logT )
2

+ [2Kbxmax(6q+ 4) +C3 logd] logT + (2bxmaxC5 + 2Kbxmax +C4)

=O
(
s20 [logT + logd]

2
)
,

where the constants C1(φ0), C2(φ0), C3(φ0, p∗), C4(φ0, p∗), and C5 are given by

C1(φ0)≡
φ4
0

512s20σ
2x2

max

, C2(φ0)≡min

(
1

2
,

φ2
0

256s0x2
max

)
, C3(φ0, p∗)≡

1024KC0x
2
max

p3∗C1

,

C4(φ0, p∗)≡
8Kbxmax

1− exp
[
−p2∗C

2
2

32

] , C5 ≡min
{
t∈Z+ | t≥ 24Kq log t+ 4(Kq)2

}
,

and we take q0 ≡max
{

20
p∗
, 4
p∗C2

2
, 12 logd

p∗C2
2
, 1024x2max logd

h2p2∗C1

}
=O (s20 logd).

Lower Bound. Goldenshluger and Zeevi (2013) prove an information-theoretic lower bound

on the expected cumulative regret of O (logT ) for a (low-dimensional) contextual bandit. Since

our formulation encompasses their setting, the same lower bound also applies to our setting. In

particular, they consider (i) low-dimension s0 = d, and (ii) two arms K = 2, (iii) both of which are

assumed to be optimal arms Kopt = {1,2}. Thus, our upper bound of O
(

[logT ]
2
)

for the expected

cumulative regret may be up to a logT factor away from being optimal in T . It remains an open

question whether tighter convergence guarantees can be developed for the LASSO estimator so

that our analysis of the LASSO Bandit can be improved to meet the current lower bound.
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In the interest of space, we do not provide a rigorous proof of the lower bound; however, we

describe a road map of the proof. First, a lower bound of O (d logT ) in the low-dimensional setting

follows by extending the proof of Goldenshluger and Zeevi (2013) using the multi-dimensional

(rather than the scalar) Van Trees inequality. In high-dimensional settings, this naturally gives

rise to a O (s0 logT ) lower bound. To see this, consider the case where the support of the arm

parameters is known; then, the decision-maker can discard irrelevant covariates, and the problem

reduces to the low-dimensional setting with a new covariate dimension of s0 (rather than d).

Remark 8. The localization parameter h (specified in Assumption 3) can be thought of as a

tolerance parameter. In practice, decision-makers may choose h to be a threshold value such that

arms are considered sub-optimal if they are not optimal for some users by at least h. For example,

in healthcare, we may not wish to prescribe a treatment that does not improve patient outcomes

above existing treatments by at least some threshold value. However, if no such value is known, one

can consider supplying an initial value of h0 and tuning this value down over time. In particular, our

algorithm provides similar regret guarantees (with some minor updates to the proof) if we choose

h= h0/
√

log t for any initial choice h0 > 0. Thus, once t is large enough such that h < h̄ (where h̄

is an unknown value that satisfies Assumption 3), we recover the desired statistical properties of

our algorithm even if the initial parameter h0 is incorrectly specified to be too large; however, the

regret during the initial time periods may suffer as a result. We exclude the proof for brevity.

4. Key Steps of the Analysis of LASSO Bandit

In this section, we outline the proof strategy for Theorem 1. First, we need to obtain convergence

guarantees for the forced-sample and all-sample estimators to compute the expected regret incurred

while using such estimators. As discussed earlier, this is challenging because the all-sample estima-

tor is trained on non-i.i.d. data, and thus standard LASSO convergence results do not apply. We

prove a new general LASSO tail inequality that holds even when the rows of the design matrix are

not i.i.d. (§4.1). We then use this result to obtain convergence guarantees for the forced-sample

(§4.2) and all-sample estimators (§4.3) under a fixed regularization path. Finally, we sum up the

expected regret from the errors in the estimators (§4.4).

4.1. A LASSO Tail Inequality for non-i.i.d. Data

We now prove a general result for the LASSO estimator. In particular, consider a linear model

W = Zβ+ ε ,

where Zn×d is the design matrix, Wn×1 is the response vector and εn×1 is the vector of errors whose

entries are independent σ-subgaussians. The rows Zt of Z are random vectors such that all their
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realizations are bounded, i.e., ‖Zt‖∞ ≤ xmax for all t ∈ [n]. We also assume ‖β‖0 = s0. Following

the notation introduced earlier in §3.1, for any subset A⊂ [n] we define the analogous quantities

Z(A), W (A), and Σ̂(A). Then, for any λ≥ 0 we have a LASSO estimator trained on samples in A:

β̂(A, λ)≡ arg min
β′

{
‖W (A)−Z(A)β′‖22

|A|
+λ‖β′‖1

}
.

Note that we have not made any distributional (or i.i.d.) assumptions on the samples in A. We now

consider that some unknown subset A′ ⊂A comprises of i.i.d. samples from a distribution PZ , i.e.,

{Zt | t∈A′} ∼PZ ×· · ·×PZ . Letting Σ≡EZ∼PZ [ZZ>], we further assume that Σ∈ C(supp(β), φ1)

for a constant φ1 ∈R+. We will show that if the number |A′| of i.i.d. samples is sufficiently large,

then we can prove a convergence guarantee for the LASSO estimator β̂(A, λ) trained on samples

in A, which includes non-i.i.d. samples. (Note that A′ is unknown; if not, we can simply use the

estimator β̂(A′, λ) trained only on the i.i.d. samples in A′.) In particular, suppose that at least

some constant fraction of the samples in A belong in A′, i.e., |A′|/|A| ≥ p/2 for a positive constant

p. We then have the following result.

Lemma 1. For any χ > 0, if d > 1, |A′|/|A| ≥ p/2, |A| ≥ 6 logd/(pC2(φ1)
2), and λ =

λ(χ,φ1
√
p/2) = χφ2

1 p/(16s0), then the following tail inequality holds:

Pr
[
‖β̂(A, λ)−β‖1 >χ

]
≤ 2exp

[
−C1

(
φ1
√
p

2

)
|A|χ2 + logd

]
+ exp

[
−pC2(φ1)

2 |A|/2
]
.

Recall that the constants C1 and C2 are defined in §3.3. The full proof is given in Appendix EC.2,

but we describe the main steps here. We first show that Σ̂(A′) ∈ C(supp(β), φ1/
√

2) with high

probability. This involves showing that ‖Σ̂(A′)−Σ‖∞ is small with high probability using random

matrix theory. Next, we use this fact along with the Azuma-Hoeffding inequality to show that

Σ̂(A)∈ C(supp(β), φ1
√
p/2) with high probability. Applying Proposition 1 to β̂(A, λ) will give the

desired tail inequality even though part of the data is not generated i.i.d. from PZ .

4.2. LASSO Tail Inequality for the Forced-Sample Estimator

We now obtain a tail inequality for the forced-sample estimator β̂(Ti,t, λ1) of each arm i∈ [K].

Proposition 2. For all i∈ [K], the forced sample estimator β̂(Ti,t, λ1) satisfies

Pr

[
‖β̂ (Ti,t, λ1)−βi‖1 >

h

4xmax

]
≤ 5

t4
,

when λ1 = φ2
0p∗h/(64s0xmax), t≥ (Kq)2, q≥ 4dq0e, and q0 satisfies the definition in §3.3.

Note that the matrix Σ̂(Ti,t) concentrates around EX∼PX [XX>]. Thus, although this estimator is

trained on i.i.d. samples from PX , the above tail inequality does not follow directly from Proposition

1 since we have only assumed that the compatibility condition holds for Σi =EX∼PX [XX>|X ∈Ui]
rather than EX∼PX [XX>] (Assumption 4). This is easily resolved by showing T ′i,t ≡ {t′ ∈ Ti,t |Xt′ ∈
Ui} is a set of i.i.d. samples from PX|X∈Ui , and then applying Lemma 1 with A = Ti,t, A′ = T ′i,t,
and PZ =PX|X∈Ui . The full proof is given in Appendix EC.3.
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4.3. LASSO Tail Inequality for the All-Sample Estimator

We now provide a tail inequality for the all-sample estimator of optimal arms Kopt. The challenge

is that the all-sample sets Si,t depend on choices made online by the algorithm. More precisely,

the algorithm selects arm i at time t based both on Xt and on previous observations {Xt′}1≤t′<t
(which are used to estimate βi). As a consequence, the variables {Xt | t∈ Si,t} may be correlated.

Moreover, unlike the forced-sample estimator, we do not have a guarantee that a constant frac-

tion of the all-sample sets Si,t are i.i.d. In particular, only the |Ti,t| = O(logT ) forced samples

are guaranteed to be i.i.d., but we will prove that |Si,t| = O(T ) for optimal arms i ∈ Kopt with

high probability. Thus, we cannot apply Lemma 1 directly with A= Si,t and A′ = T ′i,t as before.

We resolve this by showing that (i) our algorithm uses the forced-sample estimator O(T ) times

with high probability, and (ii) a constant fraction of the samples where we use the forced-sample

estimator are i.i.d. from the regions Ui. We then invoke Lemma 1 with a modified A′ such that

|A′|=O(T ). In particular, we define the event

At ≡
{
‖β̂(Ti,t, λ1)−βi‖1 ≤

h

4xmax

, ∀i∈ [K]

}
. (3)

Since the event At only depends on forced-samples, the random variables {Xt | At−1 holds} are

i.i.d. (with distribution PX). Furthermore, if we let

S ′i,t ≡
{
t′ ∈ [t] |At′−1 holds, Xt′ ∈Ui , and t′ /∈∪j∈[K]Tj,t

}
.

then the random variables {Xt′ | t′ ∈ S ′i,t} are i.i.d. (with distribution PX|X∈Ui). Finally, we will

show that for i∈Kopt, the event At′−1 ensures that LASSO Bandit chooses arm i at time t′ when

Xt′ ∈Ui, so S ′i,t ⊂Si,t. Finally, we will use Proposition 2 to show that events At′−1 occur frequently

enough so that |S ′i,t| is sufficiently large. Then, we can use Lemma 1 with A= Si,t and A′ = S ′i,t to

prove Proposition 3. (Note that we will not need to prove convergence of the all-sample estimator

for sub-optimal arms Ksub.)

Proposition 3. The all-sample estimator β̂(Si,t, λ2,t) for i∈Kopt satisfies the tail inequality

Pr

[
‖β̂ (Si,t, λ2,t)−βi‖1 > 16

√
log t+ logd

p3∗C1(φ0)t

]
<

2

t
+ 2exp

[
−p

2
∗C2(φ0)

2

32
· t
]
, (4)

when λ2,t = [φ2
0/(2s0)]

√
(log t+ logd)/(p∗C1(φ0)t) and t≥C5.

In particular, Proposition 3 guarantees ‖β̂ (Si,t, λ2,t) − βi‖1 = O(
√

log t/t) with high probability

while Proposition 2 only guarantees ‖β̂ (Ti,t, λ1)−βi‖1 =O(1) with high probability. However, note

that the all-sample estimator tail inequality only holds for optimal arms Kopt while the forced-

sample estimator tail inequality holds for all arms [K]. Thus, the LASSO Bandit uses the all-sample
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estimator to choose the best estimated arm because of its significantly faster convergence. However,

the algorithm requires a pre-processing step using the forced-sample estimator to (i) ensure that

we obtain O(T ) i.i.d. samples for each i ∈ Kopt (required for the proof of Proposition 3), and (ii)

to prune out sub-optimal arms Ksub with high probability (as we will show in the next subsection)

for which Proposition 3 does not hold. The full proof is given in Appendix EC.4.

4.4. Bounding the Cumulative Expected Regret

We now use our convergence results to compute the cumulative regret of LASSO Bandit. We divide

our time periods [T ] into three groups:

(a) Initialization (t≤C5), or forced sampling (t∈ Ti,T for some i∈ [K]).

(b) Times t > C5 when the event At−1 does not hold.

(c) Times t > C5 when the event At−1 holds and we do not perform forced sampling, i.e., the

LASSO Bandit plays the estimated best arm from K̂ (chosen by the forced-sampling estimator)

using the all-sample estimator.

Note that these groups may not be disjoint but their union contains [T ]. We bound the regret from

each period separately and sum the results to obtain an upper bound on the cumulative regret.

Our division of groups (b) and (c) is motivated by the fact that when At−1 holds, the forced-sample

estimator (i) includes the correct arm as part of the chosen subset of arms K̂ and (ii) does not

include any sub-optimal arms from Ksub in K̂. Thus, when At−1 holds, we can apply the convergence

properties of the all-sample estimator (which only hold for optimal arms) to K̂ without the concerns

that K̂ may not include the true optimal arm or that it may include sub-optimal arms.

The cumulative expected regret from time periods in group (a) at time T is bounded by at most

2bxmax(6qK logT +C5) (Lemma EC.15). This follows from the fact that the worst-case regret at

any time step is at most 2bxmax (Assumption 1), while there are only C5 initialization samples and

at most 6Kq logT forced samples up to time T (Lemma EC.8).

Next, the cumulative expected regret from time periods in group (b) at time T is bounded

by at most 2Kbxmax (Lemma EC.17). This follows from the tail inequality for the forced-sample

estimator (Proposition 2), which bounds the probability that event At does not hold at time t by

at most 5K/t4. The result follows from summing this quantity over time periods C5 < t≤ T .

Finally, the cumulative expected regret from time periods (c) at time T is bounded by at most

(8Kbxmax +C3 logd) logT +C3 (logT )
2

+C4 (Lemma EC.20). To show this, we first observe that

if event At holds, then the set K̂ (chosen by the forced-sample estimator) contains the optimal

arm i∗ = arg maxi∈[K]X
>
t βi and no sub-optimal arms from the set Ksub (Lemma EC.18). Then, we

sum the expected regret using Proposition 3 for all optimal arms. Our all-sample estimators for

each optimal arm satisfy ‖β̂ (Si,t, λ2,t)− βi‖1 =O(
√

log t/t) with high probability; thus, as shown
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in Lemma EC.19, we only incur regret if the observed covariate vectors are within a O(
√

log t/t)

distance from a decision boundary (which occurs with small probability based on Assumption 2).

Finally, if the error of some optimal arm’s parameter estimate ‖β̂ (Si,t, λ2,t)− βi‖1 is much larger

than O(
√

log t/t), we incur worst-case regret, but this occurs with exponentially small probability.

4.5. Proof of the Main Result

Summing up the regret contributions from the previous subsection gives us our main result.

Proof of Theorem 1 The total expected cumulative regret of the LASSO Bandit up to time T

is upper-bounded by summing all the terms from Lemmas EC.15, EC.17, and EC.20:

RT ≤
Regret from(a)︷ ︸︸ ︷

2bxmax(6qK logT +C5)+

Regret from (b)︷ ︸︸ ︷
2Kbxmax +

Regret from(c)︷ ︸︸ ︷
(8Kbxmax +C3 logd) logT +C3 (logT )

2
+C4

=C3 (logT )
2

+ [2Kbxmax(6q+ 4) +C3 logd] logT + (2bxmaxC5 + 2Kbxmax +C4)

= logT [C3 logT + 2Kbxmax(6q+ 4) +C3 logd] + (2bxmaxC5 + 2Kbxmax +C4) .

Now, using q=O (s20 logd), and the fact that C0, . . . ,C5, b, xmax, and φ0 are constants,

RT =O
(
logT

[
logT + s20 logd

])
=O

(
s20 [logT + logd]

2
)
. �

5. Empirical Results

The objective of this section is to compare the performance of LASSO Bandit with existing algo-

rithms that have theoretical guarantees in our setting. We present two sets of empirical results

evaluating our algorithm on both sparse synthetic data (§5.1), and a simplified version of the

warfarin dosing problem using a real patient dataset (§5.2).

5.1. Synthetic Data

We evaluate the LASSO Bandit on a synthetically-generated dataset to address two questions: (1)

How does the LASSO Bandit’s performance compare against existing algorithms empirically?; (2)

Is the LASSO Bandit robust to the choice of input parameters?

We compare the LASSO Bandit against (i) the UCB-based algorithm OFUL-LS (Abbasi-Yadkori

et al. 2011), which is an improved version of the algorithm suggested in Dani et al. (2008), (ii)

a sparse variant OFUL-EG for high-dimensional settings (Abbasi-Yadkori et al. 2012, Abbasi-

Yadkori 2012), and (iii) the OLS Bandit by Goldenshluger and Zeevi (2013). Our results demon-

strate that the LASSO Bandit significantly outperforms these benchmarks. Separately, we find

that the LASSO Bandit is robust to changes in input parameters by even an order of magnitude.
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Remark 9. We only consider algorithms that have theoretical guarantees for our problem. In par-

ticular, recall that linear bandit algorithms can only be translated to the contextual bandit if they

consider a changing action space (see Abbasi-Yadkori (2012) for details on the connection between

variations of the linear bandit and contextual bandit). Two notable linear bandit algorithms that

do not meet this criteria are Carpentier and Munos (2012) and Agrawal and Goyal (2013). We also

do not include the Thompson sampling algorithm of Russo and Van Roy (2014a) since they use

a different performance metric of Bayes risk, which is the expected value of the standard notion

of regret (that we use) with respect to a Bayesian prior over the unknown arm parameters. In

practice, the decision-maker may not have access to the true prior.

Synthetic Data Generation. We consider three scenarios for K, d, and s0: a) K = 2, d= 100,

s0 = 5; (b) K = 10, d= 1000, s0 = 2; and (c) K = 50, d= 20, s0 = 2. In each case, we consider K

arms (treatments) and d user covariates, where only a randomly chosen subset of s0 covariates are

predictive of the reward for each treatment, i.e., for each i ∈ [K], the arm parameters βi are set

to zero except for s0 randomly selected components that are drawn from a uniform distribution

on [0,1]. We note that the OFUL-EG algorithm requires an additional technical assumption that∑K

i=1 ‖βi‖1 = 1. We scale our βi’s accordingly so that this assumption is met.

Next, at each time t, user covariates Xt are independently sampled from a Gaussian distribution

N (0d, Id) and truncated so that ‖Xt‖∞ = 1. Finally, we set the noise variance to be σ2 = 0.052.

Algorithm Inputs. Bandit algorithms require the decision-maker to specify a variety of input

parameters that are often unknown in practice. For instance, Theorem 1 suggests specific input

parameters for the LASSO Bandit (e.g., σ,φ0) and similarly, the benchmark OFUL and OLS Bandit

algorithms require analogous specifications. Therefore, in order to simulate a realistic environment

where no past (properly randomized) data is available to tune these parameters, we make ad-hoc

choices for the input parameters of the LASSO and OLS Bandit algorithms, and use parameters

suggested in computational experiments by the authors of the OFUL-LS and OFUL-EG algorithms

(Abbasi-Yadkori 2012). Note that these parameters cannot be estimated from historical data since

we suffer from bandit feedback and estimating some parameters requires knowledge of every arm’s

reward at a given time step. As a robustness check, we later vary the input parameters of the

LASSO Bandit to better understand the sensitivity of its performance to these heuristic choices.

For the LASSO and OLS Bandit algorithms, we choose the forced-sampling parameter q= 1 and

the localization parameter h= 5. For the LASSO Bandit, we further set the initial regularization

parameters to c = λ1 = λ2,0 = 0.05. For the OFUL algorithms, as suggested by Abbasi-Yadkori

(2012), we set λ= 1 and δ= 10−4, and furthermore, we set η= 1 for OFUL-EG.

Results. Figure 1 compares the cumulative regret (averaged over 5 trials) of the LASSO Bandit

against other bandit algorithms on the aforementioned synthetic data for T = 10,000 steps. The
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(a) K = 2, d= 100, s0 = 5 (b) K = 10, d= 1000, s0 = 2 (c) K = 50, d= 20, s0 = 2

Figure 1 Comparison of the cumulative regret of the LASSO Bandit against other bandit algorithms on synthetic
data for different values of K, d, and s0.

shaded region around each curve is the 95% confidence interval across the 5 trials. We see that the

LASSO Bandit significantly outperforms benchmarks in cumulative regret.

Figure 1(a) shows that the LASSO Bandit continues to achieve significantly less per-time-step

regret than the alternative algorithms even for large t. For example, when t≈ 1,000, we have that

d� t and thus we are in a low-dimensional regime. However, the slope of the cumulative regret

curve of the LASSO Bandit is visibly smaller than that of the alternative algorithms at t≈ 1,000.

This shows that the LASSO Bandit may be useful even in low-dimensional regimes since other

algorithms continue to overfit the arm parameters.

Figure 1(b) considers a larger number of covariates d. As expected, we see that the performance

gap between the LASSO Bandit and the other algorithms increases significantly; this is because

the benchmark algorithms do not take advantage of sparsity and perform exploration for at least

O(Kd) samples in order to define linear regression estimates for each arm. Figure 1(c) considers a

larger number of arms and fewer covariates. Here, we see that the performance gap between the

LASSO Bandit and alternative methods decreases; this is because the LASSO Bandit does not

provide any improvement over existing algorithms in K, and provides limited improvement when

the number of covariates is very small.

Additional Simulations. To study the robustness of the above simulations, we provide a

comprehensive set of simulations in Appendix EC.6 to test the performance of the LASSO Bandit

as the parameters or modeling assumptions (required for the theory) are varied. First, we study

how the regret of the LASSO Bandit scales with respect to each of the parameters K, d, and

s0 separately (see §EC.6.1); we find that the regret appears to grow logarithmically with d, and

linearly with K and s0. Next, we perform sensitivity analysis to the input parameters h, q, and

c (see §EC.6.2). We find that the cumulative regret performance is not substantially impacted
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despite experimenting with the parameters by up to an order of magnitude; this suggests that the

LASSO Bandit is robust, which is important since input parameters are likely to be misspecified

in practice.

Another interesting direction is considering nonlinear reward functions. The LASSO Bandit can

be used in conjunction with basis expansion methods from statistical learning to approximate any

nonlinear function (Hastie et al. 2001). In §EC.6.3, we numerically demonstrate that such a version

of our method can perform very well with nonlinear rewards.

Finally, in §EC.6.4, we consider settings where the covariate distribution PX does not satisfy the

margin condition (Assumption 2) or the arm optimality condition (Assumption 3).

5.2. Case Study: Warfarin Dosing

Preliminaries. A finite-armed adaptive clinical trial with patient covariates is an ideal application

for our problem formulation and algorithm. For instance, in the aforementioned BATTLE clinical

trial (Kim et al. 2011), the arms would be the four chemotherapeutic agents, the patient covariates

would be the biomarkers from the patient’s tumor biopsy, and the reward would be the patient’s

expected length of cancer remission. Our algorithm (and other algorithms for the contextual bandit)

would seek to learn a mapping between patient biomarkers and the optimal chemotherapeutic

assignment to maximize overall patient remission rates. (Even in such a setting, we have made a

number of simplifications, e.g., the ability to observe instantaneous rather than delayed feedback.

Modeling the full complexity of the problem is beyond the scope of our paper.)

Therefore, we would ideally evaluate our algorithm on a real patient dataset from such an appli-

cation. However, performing such an evaluation retrospectively on observational data is challenging

because we require access to counterfactuals. In particular, our algorithm may choose a different

action than the one taken in the data; thus, we need an unbiased estimate of the resulting reward to

evaluate the algorithm’s performance. Estimating such counterfactuals is known to be very difficult

in healthcare since there are many unobserved confounders that can significantly bias our results.

As a consequence, we choose a unique application (warfarin dosing), where we do have access to

counterfactuals. However, in order to simulate bandit feedback, we will suppress this counterfactual

information to the bandit algorithms, thereby handicapping ourselves relative to an optimal algo-

rithm. This lets us benchmark the performance of our algorithm against existing bandit methods

in an unbiased manner on a real patient dataset (where our technical assumptions may not hold).

Warfarin Problem. Warfarin is the most widely used oral anticoagulant agent in the world

(Wysowski et al. 2007). Correctly dosing warfarin remains a significant challenge as the appropriate

dosage is highly variable among individuals (by a factor of up to 10) due to patient clinical,

demographic and genetic factors.
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Physicians currently follow a fixed-dose strategy: they start patients on 5mg/day (the appropriate

dose for the majority of patients) and slowly adjust the dose over the course of a few weeks by

tracking the patient’s anticoagulation levels. However, an incorrect initial dosage can result in

highly adverse consequences such as stroke (if the initial dose is too low) or internal bleeding (if

the initial dose is too high). Every year, nearly 43,000 emergency department visits in the United

States are due to adverse events associated with inappropriate warfarin dosing (Budnitz et al.

2006). Thus, we tackle the problem of learning and assigning an appropriate initial dosage to

patients by leveraging patient-specific factors.

Dataset. We use a publicly available patient dataset that was collected by staff at the Phar-

macogenetics and Pharmacogenomics Knowledge Base (PharmGKB) for 5700 patients who were

treated with warfarin from 21 research groups spanning 9 countries and 4 continents. Importantly,

this data contains the true patient-specific optimal warfarin doses (which are initially unknown but

are eventually found through the physician-guided dose adjustment process over the course of a

few weeks) for 5528 patients. It also includes patient-level covariates such as clinical factors, demo-

graphic variables, and genetic information that have been found to be predictive of the optimal

warfarin dosage (Consortium 2009). These covariates include:

• Demographics: gender, race, ethnicity, age, height, weight

• Diagnosis: reason for treatment (e.g. deep vein thrombosis, pulmonary embolism, etc.)

• Pre-existing diagnoses: indicators for diabetes, congestive heart failure or cardiomyopathy,

valve replacement, smoker status

• Medications: indicators for potentially interacting drugs (e.g. aspirin, Tylenol, Zocor, etc.)

• Genetics: presence of genotype variants of CYP2C9 and VKORC1

Details on the dataset can be found in Supplementary Appendix 1 of Consortium (2009). These

covariates were hand-selected by professionals as being relevant to the task of warfarin dosing based

on medical literature; there are no extraneously added variables.

Finally, we note that the authors of Consortium (2009) report that an ordinary least-squares

linear model fits the data best (i.e. achieves the best cross-validation accuracy) compared to alterna-

tive models (such as support vector regression, regression trees, model trees, multivariate adaptive

regression splines, least-angle regression, LASSO, etc.) for the objective of predicting the correct

warfarin dosage as a function of the given patient-level variables. The results of Consortium (2009)

suggest that there is no underlying sparsity in this data. Thus, one might expect low-dimensional

algorithms like the OLS Bandit or OFUL-LS to perform no worse than the LASSO Bandit; sur-

prisingly, we find that this is not the case in the online setting.

Bandit Formulation. We formulate the problem as a 3-armed bandit with covariates.
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Arms: We bucket the optimal dosages using the “clinically relevant” dosage differences suggested

in (Consortium 2009): (1) Low: under 3mg/day (33% of cases), (2) Medium: 3-7mg/day (54% of

cases), and (3) High: over 7mg/day (13% of cases). In particular, patients who require a low (high)

dose would be at risk for excessive (inadequate) anti-coagulation under the physician’s medium

starting dose. We estimate the true arm parameters βi using linear regressions on the entire dataset.

Covariates: We construct 93 patient-specific covariates, including indicators for missing values.

Reward: For each patient, we set the reward to 0 if the dosing algorithm chooses the arm

corresponding to the patient’s true optimal dose. Otherwise, the reward is set to −1. We choose

this simple reward function so that the regret directly measures the number of incorrect dosing

decisions. Other objectives (e.g., the cost of treating adverse outcomes for under- vs. over-dosing)

can be easily considered by adjusting the definition of the reward function accordingly.

As an aside, note that we have chosen a binary reward for simplicity although we are modeling

the reward as a linear function. Yet, the LASSO Bandit performs well in this setting, suggesting

that it can also be valuable for discrete outcomes.

Evaluation and Results. We consider 10 random permutations4 of patients and simulate the

following policies:

1. LASSO Bandit, described in §3 of this paper,

2. OLS Bandit, described in Goldenshluger and Zeevi (2013),

3. OFUL-LS, described in Abbasi-Yadkori et al. (2011),

4. OFUL-EG, described in Abbasi-Yadkori et al. (2012)5, and

5. Doctors, who currently always assign an initial medium dose (Consortium 2009),

6. Oracle, which assigns the optimal estimated dose given the true arm parameters βi.

Note that a true oracle policy cannot be implemented since arm parameters βi are not available.

Instead, we consider an “approximate” version of the oracle that estimates the arm parameters βi

upfront using all the patient outcomes (that have not yet been observed by the other algorithms).

This oracle may still make incorrect decisions since it only has access to estimated arm parameters.

We consider two versions of the oracle policy: Linear Oracle that estimates βi via linear regression,

and Logit Oracle that estimates βi via logistic regression (since the outcomes are binary).

4 We also repeated the analysis using bootstrap samples (random subsets with replacement) and the results were
similar. We present the results for permuted samples because the confidence intervals produced by the bootstrapped
samples may be optimistic (since they may overfit to samples drawn multiple times from the original data with
replacement). In the offline setting, Efron and Tibshirani (1993) provide methods for correcting such bias; such
methods may be extendable to our online setting, but this is beyond the scope of this paper.

5 The original OFUL-EG requires the assumption that
∑k
i=1 ‖βi‖1 = 1 (Abbasi-Yadkori 2012); however, there is no

way to guarantee that this holds on a real dataset where we do not know the {βi}. Thus, we modify the confidence
sets using the EG(±) algorithm (Kivinen and Warmuth 1997), which does not require this assumption.
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We sequentially draw random permutations of patients and simulate the actions and feedback

of each of the six policies. Note that the data contains each patient’s true optimal dosage, but we

suppress this information from the learning algorithms; we use the true dosage as counterfactuals

to evaluate the reward of each algorithm after it chooses an action. Figure 2 compares the average

fraction of incorrect dosing decisions under each policy as a function of the number of patients

seen in the data; the shaded error bars represent statistical fluctuations of the rewards over the 10

permutations.

Figure 2 Comparison of the fraction of incorrectly dosed patients under the oracle, LASSO Bandit, OLS Bandit,
OFUL-LS, OFUL-EG, and doctor policies as a function of number of patients in the warfarin data.

We first note that the LASSO Bandit outperforms the three other bandit algorithms for any

number of patients across all permutations. The results show three regimes:

Small Data. When there are very few samples (< 200 patients), the doctor’s policy of assigning

the medium dose (which is optimal for the majority of patients) performs best on average.

Moderate Data. When there are a moderate number of samples (200 - 1500 patients), the

LASSO Bandit effectively learns the arm parameters and outperforms the doctor’s policy; however,

the remaining bandit algorithms still perform worse than physicians.

Big Data. When there are a large number of samples (1500 - 5000 patients), both the LASSO

and OLS bandit policies outperform the physician’s policy and begin to look comparable. However,

the OFUL-LS and OFUL-EG algorithms still perform worse than doctors.

Note that all three existing bandit algorithms required more than 1500 patient samples before

outperforming the doctor’s static policy; this may be prohibitively costly in a healthcare setting

and may hinder adoption of learning strategies in practice. In contrast, we see that the LASSO
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LASSO Bandit Policy Physician Policy % of
Assigned Dosage Assigned Dosage Patients

Low Medium High Low Medium High

T
ru

e
D

o
sa

g
e Low 57% 42% 1% 0% 100% 0% 33%

Medium 14% 83% 3% 0% 100% 0% 54%

High 3% 90% 7% 0% 100% 0% 13%

Table 1 Fraction of patients (stratified by their true dose) who were assigned each dose (low/medium/high)
under the LASSO Bandit and physician policies. Blue numbers indicate the fraction of patients who were dosed

correctly; red numbers indicate the fraction of patients who were dosed incorrectly by two buckets.

Bandit starts outperforming the doctor’s policy after only 200 patients, resulting in a significant

improvement of outcomes for initial patients. Thus, although an OLS linear model fits the entire

dataset better than a LASSO model, it may be more effective to use the LASSO Bandit in an

online setting in order to more efficiently use information as it is collected. In particular, the

LASSO Bandit uses regularization to first build simple predictive models (with few covariates),

and gradually builds more complex predictive models (by including more covariates over time);

this helps us make reasonable decisions in the small-data regime without sacrificing performance

in the big-data regime.

Risk Implications. One concern that arose in conversations with clinicians is that although

the LASSO Bandit policy achieves a higher dosing accuracy overall (compared to doctors), it may

assign a “significantly worse” dose to some patients. In particular, the bandit algorithm may assign

a low dose to a patient whose true dose is high (or vice-versa); on the other hand, the doctor

always hedges her bet by assigning the medium dose. To better illustrate the risk consequences,

we tabulate the assigned vs. true dosages for the LASSO Bandit and doctor’s policies after 5,000

patients (see Table 1). The red numbers indicate the fraction of patients assigned a significantly

worse dose and the blue numbers indicate the fraction of patients assigned the correct dose. We

find that there is only a 0.7% weighted probability that a patient receives a significantly worse

dose under the LASSO Bandit policy. On the other hand, the LASSO Bandit correctly doses 57%

of the patients for whom low dosage is optimal; in contrast, the physician policy does not dose any

of these patients correctly (thereby subjecting them to excessive anti-coagulation) although they

account for a third of the patient population. This trade-off can be explored further by adjusting

the reward function; in particular, we have used a binary loss for mis-dosing, but the loss can be

a function of the magnitude of mis-dosing.

Remark 10. Several simplifying assumptions were made in this case study. For example, warfarin

dosing is not a truly bandit problem, since we always observe the optimal arm (patient’s true dose)
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even if we play the wrong arm (assign the wrong dose initially) as the doctor tunes the dosage

over time. Yet, we use this setting as a case study to evaluate bandit policies because the data

contains the true counterfactual outcomes without performing an experiment. For problems with

true bandit feedback, we do not observe counterfactual rewards for actions that were not chosen in

the data, so we cannot evaluate the counterfactual performance of the LASSO Bandit. In practice,

the LASSO Bandit would be most useful for bandit settings where the patient can only receive one

treatment and the counterfactual outcomes under other treatments cannot be observed, e.g., the

problem of choosing chemotherapy agents as described in the introduction (Kim et al. 2011).

6. Conclusions

We present the LASSO Bandit algorithm for contextual bandit problems with high-dimensional

covariates, and we prove the first regret bound that grows only poly-logarithmically in both the

number of covariates and the number of patients. We empirically find that the LASSO Bandit is

more versatile than existing methods: although it is designed for high-dimensional sparse settings,

it outperforms the OLS Bandit even in low-dimensional and non-sparse problems. We illustrate

the LASSO Bandit’s practical relevance by evaluating it on a medical decision-making problem of

warfarin dosing; we find that it surpasses existing bandit methods as well as physicians to correctly

dose a majority of patients and thereby improve overall patient outcomes. We note that several

simplifying assumptions were made in this evaluation, and thus, modeling the full complexity of

the problem would be a valuable direction to pursue in future work.

Limitations and future directions. We conclude by discussing a number of limitations of

the LASSO Bandit algorithm. First, it is not suitable in applications with a large number of arms,

since our regret bounds scale superlinearly with K. This is because our model treats each arm as

an independent decision, and so the outcome of each arm provides no information on other arms.

However, in certain applications (e.g., combination chemotherapy where each arm is a combination

of several base drugs, or assortment optimization where each assortment is a combination of several

products), one can improve performance by taking advantage of the correlation between arms.

Second, our algorithm relies on a prescribed schedule for exploration. Such pure exploration phases

may be prohibitively costly or unethical in settings such as medical decision-making. In such

situations, methods such as UCB that only explore within a certain confidence set may be more

desirable. One could even consider algorithms that avoid exploration. Finally, our algorithm, similar

to UCB or OLS Bandit, requires a number of input parameters which should ideally be optimized for

the desired application. An interesting research question would be how to optimize these parameters

in a data-driven fashion.
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Online Appendix
This appendix contains proofs of the theoretical results, additional simulations testing the robust-

ness of LASSO Bandit, and new results for the OLS Bandit.

EC.1. Proof of LASSO Tail Inequality for Adapted Observations

Recall the setup of §3.1. Let Xt denote the tth row of X and Y (t) denote the tth entry of Y . The

sequence {Xt : t= 1, ..., n} forms an adapted sequence of observations, i.e., Xt may depend on past

regressors and their resulting observations {Xt′ , Y (t′)}t−1t′=1. We also assume that all realizations of

the random variable Xt, t∈ [n], satisfy ‖Xt‖∞ ≤ xmax.

Before proving Proposition 1, we state and prove some lemmas, starting with the Bernstein

concentration inequality for adapted sequences.

Lemma EC.1 (Bernstein Concentration). Let {Dk,Sk}∞k=1 be a martingale difference

sequence, and suppose that Dk is σ-subgaussian in an adapted sense, i.e., for all α ∈ R,

E[eαDk |Sk−1]≤ eα
2σ2/2 almost surely. Then, for all t≥ 0, Pr[ |

∑n

k=1Dk| ≥ t]≤ 2exp[−t2/(2nσ2)].

Lemma EC.1 is from Theorem 2.3 of Wainwright (2016) when α∗ = ak = 0 and νk = σ for all k.

Lemma EC.2. Define the event

F (λ0(γ))≡
{

max
r∈[d]

(
2|ε>X(r)|/n

)
≤ λ0(γ)

}
,

where X(r) is the rth column of X and λ0(γ) ≡ 2σxmax

√
(γ2 + 2 logd)/n. Then, we have

Pr[F(λ0(γ))]≥ 1− 2exp [−γ2/2].

Proof of Lemma EC.2 Let St be the sigma algebra generated by random variablesX1, . . . ,Xt−1,

and Y (1), . . . , Y (t− 1). First, using a union bound, we can write

Pr[F(λ0(γ))]≥ 1−
d∑
r=1

Pr
[
|ε>X(r)|>nλ0(γ)/2

]
.

Now, for each r ∈ [d], let Dt,r = εtXt,r and note that D1,r, ...Dn,r is a martingale difference sequence

adapted to the filtration S1 ⊂ ... ⊂Sn since E [εtXt,r|St] = 0. On the other hand, each Dt,r is a

(xmaxσ)-subgaussian random variable adapted to {St}nt=1, since

E[eαDt,r |St−1] ≤ EXt [e
α2X2

t,rσ
2/2|St−1] ≤ eα

2(xmaxσ)
2/2 .

Then, using Lemma EC.1, Pr [F(λ0(γ))]≥ 1− 2d exp [−(γ2 + 2 logd)/2] = 1− 2exp[−γ2/2]. �

Lemma EC.3 (From page 105 of (Bühlmann and Van De Geer 2011)). For anly λ0 ∈
R+, when λ≥ 2λ0, on event F(λ0), we have

2‖X(β̂−β)‖22/n+λ‖β̂supp(β)c‖1 ≤ 3λ‖β̂supp(β)−βsupp(β)‖1 .
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Now we are ready to prove Proposition 1.

Proof of Proposition 1 Let λ0(γ) = 2σxmax

√
(γ2 + 2 logd)/n and let λ be an arbitrary constant

such that λ≥ 2λ0(γ). If both events F(λ0(γ)) and {Σ̂(X)∈ C(supp(β), φ)} hold, then

2‖X(β̂−β)‖22/n+λ‖β̂−β‖1 = 2‖X(β̂−β)‖22/n+λ‖β̂supp(β)−βsupp(β)‖1 +λ‖β̂supp(β)c‖1

≤ 4λ‖β̂supp(β)−βsupp(β)‖1

≤ 4λ
√
s0‖X(β̂−β)‖2/

√
nφ2

≤ ‖X(β̂−β)‖22/n+ 4λ2s0/φ
2 .

Here the three inequalities use Lemma EC.3, the definition of C(supp(β), φ) (Definition 2), and the

inequality 4uv≤ u2 + 4v2, respectively. Thus, for λ≥ 2λ0(γ),

Pr

{
‖β̂−β‖1 ≤

4λs0
φ2

}
≥Pr

[
F(λ0(γ))∩{Σ̂(X)∈ C(supp(β), φ)}

]
≥Pr [F(λ0(γ))]−Pr

[
Σ̂(X) /∈ C(supp(β), φ)

]
≥ 1− 2exp

[
−γ2/2

]
−Pr

[
Σ̂(X) /∈ C(supp(β), φ)

]
.

Summarizing, we have shown that,

λ≥ 2λ0(γ) =⇒Pr

{
‖β̂−β‖1 >

4λs0
φ2

}
≤ 2exp

[
−γ2/2

]
+ Pr

[
Σ̂(X) /∈ C(supp(β), φ)

]
. (EC.1)

Now we choose γ = γ(χ)≡
√

2nC∗χ2− 2 logd for a suitable constant C∗, to be determined. Then,

the exponent of the error probability becomes −γ(χ)2/2 =−nC∗χ2 + logd. We will now show that

C∗ =C1(φ) will guarantee the condition λ(χ,φ)≥ 2λ0(γ(χ)). In particular,

2λ0(γ(χ)) = 4σxmax

√
[γ(χ)2 + 2 logd]/n = 4σxmaxχ

√
2C∗ =

16σxmaxs0
φ2

χφ2

4s0︸︷︷︸
λ(χ,φ)

√
2C∗ .

Therefore, for the inequality λ(χ,φ)≥ 2λ0(γ(χ)) to hold, we need φ4 ≥C∗(512s20σ
2x2

max), which is

satisfied by C∗ = C1(φ). Now, we can invoke (EC.1) for λ= λ(χ,φ), and use the inverse relation

χ= 4λ(χ,φ)s0/φ
2 to finish the proof. �

EC.2. Proof of LASSO Tail Inequality for Non-i.i.d. Data

Recall the setup from §4.1 as well as assumptions of Lemma 1. The proof involves showing that

‖Σ̂(A′)−Σ‖∞ is small with high probability using random matrix theory. Next, we use the Azuma-

Hoeffding inequality to show that Σ̂(A) ∈ C(supp(β), φ1
√
p/2) with high probability. This result

provides a tail inequality for LASSO estimates β̂(A, λ), even when part of the data is not generated

i.i.d. from PZ .
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EC.2.1. Empirical covariance matrix via random matrix theory

Lemma EC.4. Given i.i.d. observations Z1, ...,Zn ∈Rd from the distribution PZ such that all real-

izations of Zt satisfy ‖Zt‖∞ ≤ xmax for all t∈ [n], then for all w> 0,

Pr

[
‖Σ̂−Σ‖∞ ≥ 2x2

max

(
w+
√

2w+

√
2 log(d2 + d)

n
+

log(d2 + d)

n

)]
≤ e−nw ,

where Σ≡EPZ [ZZ>] and Σ̂≡
∑n

t=1ZtZ
>
t /n.

Proof of Lemma EC.4 First, define the family {γjk}1≤j≤k≤d of real-valued functions that take

as input random variables Z ∼PZ . Precisely, for all 1≤ j ≤ k≤ d,

γjk(Z)≡ Z(j)Z(k)−E[Z(j)Z(k)]

2x2
max

,

where Z(j) refers to jth coordinate of vector Z. It is easy to see that each such γjk satisfies

E[γjk(Z)] = 0 and

1

n

n∑
t=1

E|γjk(Zt)|m ≤ 1 , m= 2,3, . . . ,

implying that the family {γjk}1≤j≤k≤d satisfies condition (14.5) in page 489 of Bühlmann and Van

De Geer (2011) with K = 1. Therefore, we can apply Lemma 14.13 from page 490 of Bühlmann

and Van De Geer (2011) and obtain, for all w> 0,

Pr

[
max

1≤j≤k≤d

∣∣∣∣ 1n
n∑
t=1

γjk(Zt)

∣∣∣∣≥w+
√

2w+

√
2 log(d2 + d)

n
+

log(d2 + d)

n

]
≤ e−nw .

Now, the result follows from the fact that ‖Σ̂−Σ‖∞/(2x2
max) = max1≤j≤k≤d |

∑n

t=1 γjk(Zt)|/n. �

EC.2.2. Compatibility condition for non-i.i.d. samples

Recall A, A′, Σ, β, Z, W , and the corresponding assumptions on them from §4.1. We will first

show that Σ̂(A′) satisfies the compatibility condition (with respect to supp(β) and an appropriate

constant) with high probability.

Lemma EC.5. If Σ ∈ C(supp(β), φ1) for constant φ1 > 0 and ‖Σ−Σ′‖∞ ≤ φ2
1/(32s0) holds, then

Σ′ ∈ C(supp(β), φ1/
√

2).

Proof of Lemma EC.5 The proof follows directly from Corollary 6.8 in page 152 of Bühlmann

and Van De Geer (2011). �

Lemma EC.6. If the assumptions of Lemma 1 hold, then

Pr

[
Σ̂(A′)∈ C(supp(β),

φ1√
2

)

]
≥ 1− e−C2(φ1)

2|A′| .
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Proof of Lemma EC.6 Given the assumptions of Lemma 1, we have |A′| ≥ 3 log(d)/C2(φ1)
2.

Together with d > 1, this implies that log(d2 + d)/|A′| ≤ C2
2 (φ1). Therefore, for w = C2

2 (φ1), we

have,

2x2
max

(
w+
√

2w+

√
2 log(d2 + d)

|A′|
+

log(d2 + d)

|A′|

)
≤ 4x2

max

[
C2(φ1)

2 +
√

2C2(φ1)
]

≤ 8x2
maxC2(φ1)

≤ φ2
1

32s0
,

where the last two inequalities follow from the definition of C2(φ1) = min[1/2, φ2
1/(256s0x

2
max)].

Thus, it follows from Lemma EC.4 that

Pr

[
‖Σ− Σ̂(A′)‖∞ ≥

φ2
1

32s0

]
≤ e−C2(φ1)

2|A′|

The result then follows directly from Lemma EC.5. �

Lemma EC.7. Given the assumptions of Lemma 1, if we have Σ̂(A′) ∈ C(supp(β), φ′1) for some

constant φ′1 > 0, then Σ̂(A)∈ C(supp(β), φ′1
√
|A′|/|A|).

Proof of Lemma EC.7 By definition, we can write

Σ̂(A) =
|A′|
|A|

Σ̂(A′) +
1

|A|
∑

t∈A\A′
ZtZ

>
t =
|A′|
|A|

Σ̂(A′) +
|A \A′|
|A|

Σ̂(A\A′) .

Then, for all v satisfying ‖vsupp(β)c‖1 ≤ 3‖vsupp(β)‖1,

v>Σ̂(A)v=
|A′|
|A|

v>Σ̂(A′)v+
|A \A′|
|A|

v>Σ̂(A\A′)v≥ |A
′|
|A|

φ′21 ‖vsupp(β)‖21
s0

,

using the fact that Σ̂(A\A′) is positive semi-definite. �

Now we have all the ingredients to complete the proof of Lemma 1.

Proof of Lemma 1: Applying Lemmas EC.6 and EC.7 implies that

Σ̂(A)∈ C

(
supp(β),

φ1√
2

√
|A′|
|A|

)
,

with probability at least 1− exp[−C2(φ1)
2|A′|]. This implies that Σ̂(A)∈ C(supp(β), φ1

√
p/2) with

probability at least 1− exp[−pC2(φ1)
2|A|/2]. Applying Proposition 1 with compatibility constant

φ= φ1
√
p/2 yields the result. �
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EC.3. Proof of LASSO Tail Inequality for Forced-Sample Estimator

In this section, we prove a tail inequality for the forced sample estimator β̂(Ti,t, λ1) by applying

Lemma 1. Recall that at each t ∈ Ti,t, we draw a random covariate vector Xt, sampled i.i.d. from

PX , and play arm i. Moreover, we assumed that Σi ∈ C(supp(βi), φ0) where Σi =EX∼PX|X∈Ui [XX>]

and also that Pr [Xt ∈Ui]≥ p∗.

Lemma EC.8. If t≥ (Kq)
2
, then (1/2)q log t≤ |Ti,t| ≤ 6q log t.

Proof of Lemma EC.8 Define the nth round of forced sampling of all the arms

Ln ≡ {(2n− 1)Kq+ 1, . . . , (2n)Kq} ,

for n≥ 0. By construction, arm i is sampled |Ti ∩Ln|= q times during Ln, so∣∣∣∣∣Ti ∩
(
n−1⋃
r=0

Lr

)∣∣∣∣∣= nq .

Then for each t∈Ln, nq≤ |Ti,t| ≤ (n+ 1) q. To show the lower bound, note that for t∈Ln, we have

t≤ (2n)Kq, i.e., log2 [t/(Kq)]≤ n. Therefore, using t≥ (Kq)2,

|Ti,t| ≥ nq≥ q log2

t

Kq
≥ q (log t− logKq)≥ (1/2)q log t .

To show the upper bound, note that for t∈Ln, t≥ (2n− 1)Kq, i.e., n≤ log2 [1 + t/(Kq)], so

|Ti,t| ≤ (n+ 1)q≤
[
log2

(
t

Kq
+ 1

)
+ 1

]
q≤ log(2t+ 2

√
t)

log 2
q≤ 6q log t . �

Lemma EC.9. Let T ′i,t ⊂ Ti,t be the set of all r ∈ Ti,t such that Xr ∈ Ui. Then for each r ∈ Ti,t
we have r ∈ T ′i,t independently with probability at least p∗. In addition, {Xr}r∈T ′i,t are i.i.d. from

PX|X∈Ui.

Proof of Lemma EC.9 By construction, for each r ∈ Ti,t, Xr is drawn i.i.d. from PX and there-

fore with probability at least p∗, Xr ∈ Ui, i.e., s ∈ T ′i,t. Also, note that the events Xr ∈ Ui are

independent for different values of r since the original sequence {Xr}s∈Ti,t is i.i.d., implying that

each r ∈ T ′i,t, Xr is an i.i.d. sample of PX|X∈Ui . �

Using Lemma EC.9 we see that the inclusion of each member of Ti,t in T ′i,t is a Bernoulli i.i.d.

random variable with mean at least p∗. Therefore, we get the following result using Chernoff bound.

Lemma EC.10. If t≥ (Kq)
2
, for Ti,t and T ′i,t defined as in Lemma EC.9 the following holds

Pr

[ |T ′i,t|
|Ti,t|

≥ p∗
2

]
≥ 1− 2

t4
.
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Proof of Lemma EC.10 We use the following version of the Chernoff inequality (Corollary

A.1.14 in page 268 of Alon and Spencer 1992, for ε= 1/2 and cε ≈ 0.1082): Letting y be the sum

of mutually independent indicator random variables with µ=E[y], we have that

Pr [ |y−µ|>µ/2 ]< 2exp [−0.1µ] .

Applying this to indicator random variables I(r ∈ T ′i,i) for all r ∈ Ti,t and using

µ=E

∑
r∈Ti,t

I(r ∈ T ′i,t)

≥ p∗|Ti,t| ,
we can write that

Pr
[
|T ′i,t|< (p∗/2)|Ti,t|

]
< 2e−

p∗
10 |Ti,t| .

Next, using Lemma EC.8, t≥ (Kq)2, q≥ 4q0, and the definition of q0 from §3.3 we have

Pr
[
|T ′i,t|< (p∗/2)|Ti,t|

]
< 2e−(p∗/5)q0 log t ≤ 2

t4
. �

Now we are ready to prove Proposition 2.

Proof of Proposition 2 By construction, and the definition of q0 from §3.3,

|Ti,t| ≥ (1/2)q log t≥ 2q0 log t≥ 6 log(d)

p∗C2(φ0)2
.

Then combining Lemma EC.9-EC.10 and Lemma 1, with PZ = PX|X∈Ui , χ = h/(4xmax), p = p∗,

and λ1 = λ(h/(4xmax, φ0
√
p∗/2) we obtain

Pr

[
‖β̂ (Ti,t, λ1)−βi‖1 >

h

4xmax

]
≤ 2e

−C1

(
φ0
√
p∗

2

)
2q0 log t h2

16x2max
+logd

+ e−p∗C2(φ0)
2q0 log t +

2

t4

≤ 2e
−p2∗C1(φ0)q0 log t h2

128x2max
+logd

+
1

t4
+

2

t4

≤ 5

t4
.

The last two inequalities use the definition of q0 and the fact that t ≥ (Kq)2 to show that the

exponent of each term on the right hand side is at most −4 log t. �

EC.4. Proof of LASSO Tail Inequality for All-Sample Estimator

In this section, we prove the tail inequality for the all-sample estimator β̂(Si,t, λ2,t) for arms in

Kopt. The approach mirrors the steps taken in Appendix EC.3. However, there is an additional

complication due to the correlation between rows of X(Si,t) that was discussed in §4.3. Recall the

events At defined in Eq. (3).
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Lemma EC.11. For each i ∈ [K], if the events Xt ∈ Ui and At−1 hold, and t /∈ ∪j∈[K]Tj,t, the

LASSO Bandit uses the forced-sample estimator β̂(Ti,t−1, λ1) to arrive at K̂= {i}, implying that it

plays the optimal arm at time t.

Proof of Lemma EC.11 Since Xt ∈Ui, we know

X>t βi ≥ h+ max
j 6=i

X>t βj .

Then, for any j ∈ [K] \ {i}, since At−1 holds,

X>t

[
β̂(Ti,t−1)− β̂(Tj,t−1)

]
=X>t

[
β̂(Ti,t−1)−βi

]
−X>t

[
β̂(Tj,t−1)−βj

]
+X>t (βi−βj)

≥−xmax

h

4xmax

−xmax

h

4xmax

+h

≥ h/2 .

Thus, at time t, K̂= {i}, i.e., the LASSO Bandit will play arm i. �

Lemma EC.12. For all t with t≥ (Kq)2 the event At occurs with probability at least 1− 5K/t4.

Proof of Lemma EC.12 For each i∈ [K] and all t≥ (Kq)2, we have from Proposition 2,

Pr

[
‖β̂(Ti,t, λ1)−βi‖1 >

h

4xmax

]
≤ 5

t4
.

Taking a union bound over all K arms gives us the result. �

Lemma EC.13. Let i∈ [K]. Recall from §4.3 that S ′i,t ⊂ [t] is the set of all time periods r such the

events Xr ∈Ui and Ar−1 hold and we are not forced-sampling any arm j ∈ [K]. Then the following

properties are satisfied.

(1) The set of random variables {Xr | r ∈ S ′i,t} are i.i.d. from distribution PX|X∈Ui.

(2) For each r ∈ [t] \∪j∈[K]Tj,t, we have r ∈ S ′i,t with probability at least p∗/2 when t≥ (Kq)2.

(3) S ′i,t ⊂Si,t.

Proof of Lemma EC.13 For (1), since Ar−1 is only a function of samples in Ti,r−1, Ar−1 is

independent of Xr. Therefore, random variables {Xr|Ar−1 holds} are i.i.d. samples from PX . Now,

the presence of each Xr in Ui is simply rejection sampling; thus, using the fact that r /∈∪j 6=iTj,t is

deterministic, for each r ∈ S ′i,t, Xr is distributed i.i.d. from PX|X∈Ui . For (2), we know that X ∈Ui
with probability at least p∗ and Lemma EC.12 implies that Ar−1 holds with probability at least

1− 5K(r − 1)−4 when (r − 1) ≥ (Kq)
2
. Note that (r − 1) ≥ (Kq)2 ≥ 16K2 (since q ≥ 4dq0e ≥ 4),

which implies that Ar−1 holds with probability at least 1− 5K(r− 1)−4 ≥ 1/2. Then, r ∈ S ′i,t with

probability at least p∗/2. Finally, for (3), from Lemma EC.11, we know that for Xr ∼PX , if events

Xr ∈Ui and Ar−1 holds and r /∈∪j∈[K]Tj,t, then r ∈ Si,t, so S ′i,t ⊂Si,t. �
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Lemma EC.14. If t≥C5, for S ′i,t defined as in §4.3 the following holds

Pr
[
|S ′i,t| ≥ t p∗/4

]
≥ 1− etp

2
∗/36 .

Proof of Lemma EC.14 Note that we need to take a more refined approach than in Lemma

EC.10 since the events r ∈ S ′i,t, r ∈ [t], are not independent. By definition of S ′i,t we have for all

r ∈ [t]/Ti,t,
I(r ∈ S ′i,t) = I(Ar−1) · I(Xr ∈Ui) · I(r /∈∪j∈[K]Tj,t) .

Note that by construction of the forced-sampling sets, for each round of forced-sampling

n ∈ {0,1,2, ...}, the time periods t ∈ [2nKq + 1, (2n+1 − 1)Kq] are played contiguously without

any forced-sampling (or updates to the forced-sampling estimators). Then, for any time t /∈
{Tj,t′}j∈[K],t′∈[T ] where we do not perform forced sampling, let nt be the largest integer satisfying

t > 2nt+1Kq. Given arm i, we can define

Mi,t ≡
(2nt+1−1)Kq∑
r=2ntKq+1

I(r ∈ S ′i,t) +
t∑

r=2nt+1Kq+1

I(r ∈ S ′i,t) <
t∑

r=1

I(r ∈ S ′i,t) = |S ′i,t| .

In other words, Mi,t is strictly smaller than |Si,t|, because it only considers the time interval

Vt = [2ntKq+ 1, (2nt+1− 1)Kq]∪ [2nt+1Kq+ 1, t] ⊂ [1, t] .

By construction, the time interval [2ntKq+1, (2nt+1−1)Kq] contains no forced-sampling, and thus

the forced-sample estimator is never updated in this period; the same holds for [2nt+1Kq+1, t]. As

a result, note that the event Ar =A2ntKq for all times r in the first interval, and Ar =A2nt+1Kq for

all times r in the second interval. Thus, we can expand

Mi,t =

(2nt+1−1)Kq∑
r=2ntKq+1

I(A2ntKq) · I(Xr ∈Ui) · I(r /∈∪j∈[K]Tj,t)

+
t∑

r=2nt+1Kq+1

I(A2nt+1Kq) · I(Xr ∈Ui) · I(r /∈∪j∈[K]Tj,t)

≥ I(A2ntKq) · I(A2nt+1Kq) ·
∑
r∈Vt

I(Xr ∈Ui) ,

We are then left with a sum over independent random variables drawn from PX , each occurring with

probability p∗ by Assumption 3. The definition of nt as the largest integer such that t > 2nt+1Kq

implies that

|Vt|= (t− 2nt+1Kq) + (2nt+1Kq−Kq− 2ntKq) = t− 2ntKq−Kq

> t− t/2−Kq = t/2−Kq

> 3t/8 ,
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where we note that t > 8Kq for t≥C5. Next, note that since t≥C5 > 4(Kq)2 and t < 2nt+2Kq by

definition of nt, we can write

2ntKq > t/4≥ (Kq)2 ,

allowing us to apply Lemma EC.12 for r= 2ntKq and r= 2nt+1Kq. A simple union bound yields

Pr[A2ntKq and A2nt+1Kq]≥ 1− 5K

(t/4)2
− 5K

(t/2)2

≥ 1− 100

K3q4
> 8/9 ,

by the definition of q. Then,

E[Mi,t]≥Pr[A2ntKq and A2nt+1Kq] · p∗|Vt|

≥ tp∗
3
,

Applying the Hoeffding inequality, we have that

Pr [Mi,t <E[Mi,t]− η]≤ e−2η
2/|Vt|

≤ e−4η
2/t ,

Plugging in η= tp∗/12, we have

Pr [Mi,t < tp∗/4]≤ e−tp
2
∗/36 .

Applying the fact that Mi,t ≤ |S′i,t|, we have that

Pr
[
|S ′i,t|<

tp∗
4

]
≤ e−tp

2
∗/36 .

�

Now, we are ready to prove Proposition 3.

Proof of Proposition 3: From Lemma EC.14, for t≥C5 we have |S ′i,t| ≥ p∗t/4 with probability

1−exp[−t p2∗/128]. Therefore, using a union bound, we can apply Lemma 1 with p= p∗/2, A= Si,t,

A′ = S ′i,t, and λ= χφ2
0p∗/(32s0) to arrive at,

Pr
[
‖β̂ (Si,t, λ)−βi‖1 >χ

]
≤ 2exp

[
−C1

(
φ0

√
p∗/2

2

)
tp∗
4
χ2 + logd

]
+ exp

[
− tp

2
∗C2(φ0)

2

16

]
+ exp

[
− tp

2
∗

36

]
≤ 2exp

[
− tp

3
∗C1(φ0)

256
χ2 + logd

]
+ 2exp

[
− tp

2
∗C2(φ0)

2

32

]
,
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where the last inequality uses C2(φ0)≤ 1/2. Note that the condition |A′|/|A| ≥ p∗/4 holds when

|S ′i,t| ≥ p∗t/4 (since |A| ≤ t). Also, the condition |Si,t| ≥ 6 log(d)/(p∗C2(φ0)
2) is satisfied, using

|Si,t| ≥ |S ′i,t| ≥ p∗t/4, t≥C5, q≥ 4q0, and the definition of q0. Taking

χ= 16

√
log t+ logd

tp3∗C1(φ0)
,

gives us the desired result. Note that this choice of χ implies λ= λ2,t. �

EC.5. Bounding the Regret in the High-Dimensional Setting

Recall from our proof strategy in §4.4, that we divide our time steps [T ] into three groups:

(a) Initialization (t≤C5) or forced sampling (t∈ Ti,T for some i∈ [K]).

(b) Times t > C5 when the event At−1 does not hold.

(c) Times t > C5 when the event At−1 holds and we do not perform forced sampling.

These groups may not be disjoint but their union contains [T ].

We now compute an upper bound on the regret for time periods in each group (a)-(c) and sum

the results. First, the following lemma gives the worst-case regret for time periods in (a).

Lemma EC.15. The cumulative expected regret of the LASSO Bandit from initialization (t < C5)

and forced sampling (t∈ Ti,t for some i∈ [K]) up to time T is at most

2Kqbxmax(6 logT +C5) .

Proof of Lemma EC.15: From Lemma EC.8, at most 6Kq logT forced samples occur up to time

T . We also have C5 initialization samples. Using Cauchy-Schwarz, we can bound the worst-case

regret in each time period by maxi,jX
> (βi−βj)≤ 2bxmax. The result follows directly. �

Before moving to time periods in (b)-(c), we state the following helpful lemma:

Lemma EC.16. If f is a monotone decreasing and integrable function on the range [r−1, s], then

s∑
t=r

f(t)≤
∫ s

r−1
f(t)dt .

Proof of Lemma EC.16:

s∑
t=r

f(t)≤
s∑
t=r

∫ t

t−1
f(t̃)dt̃=

∫ s

r−1
f(t)dt . �

Next, we find the worst-case regret from time periods in (b) at time T .

Lemma EC.17. The cumulative expected regret of LASSO Bandit from time periods C5 < t ≤ T

where At−1 does not hold is at most 2Kbxmax.
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Proof of Lemma EC.17 From Lemma EC.12, the probability that At−1 does not hold is at most

5Kt−4 ≤Kt−3 since t ≥ C5 > 5. Now we can sum this quantity for t ∈ [C5, T − 1]. Using Lemma

EC.16,
T−1∑
t=C5

K

t3
≤K

∫ T

1

1

t3
dt≤ K

2
(1− 1

T 2
)≤K .

As before, the worst-case regret at time t is 2bxmax, and the result follows. �

Before analyzing the regret from group (c), we show that if the event At−1 holds, then the set

K̂ chosen by the forced-sample estimator has two desirable properties: (i) it contains the true

optimal arm, and (ii) it does not contain any sub-optimal arms. Thus, we can apply the convergence

properties of the all-sample estimator (which only hold among optimal arms) to analyze the regret

from choosing an arm within K̂.

Lemma EC.18. If At−1 holds, then the set K̂ contains the optimal arm i∗ = arg maxi∈[K]X
>
t βi and

no sub-optimal arms from the set Ksub.

Proof of Lemma EC.18 To simplify notation, we call our forced-sample arm estimators

β̂(Ti,t−1, λ1) at time t as β̂i. Since At−1 holds, we have that for any pair of arms i, j ∈ [K],

X>t β̂i−X>t β̂j =X>t (β̂i−βi) +X>t (βj − β̂j) +X>(βi−βj)

≤ h/2 +X>t (βi−βj) .

Thus, if we let i= arg max`∈[K]X
>
t β̂` and j = i∗, we see that X>t (β̂i− β̂i∗)≤ h/2 since X>t (βi−βi∗)<

0 (by definition of i∗). Then, the optimal arm i∗ ∈ K̂.

On the other hand, consider i = arg max`∈[K]X
>
t β̂` and any sub-optimal arm j ∈ Ksub. Then,

X>t β̂i−X>t β̂j ≥X>t β̂i∗ −X>t β̂j, and furthermore, since At−1 holds:

X>t β̂i∗ −X>t β̂j =X>t (β̂i∗ −βi∗) +X>t (βj − β̂j) +X>(βi∗ −βj)

≥−h/2 +X>t (βi∗ −βj) .

Recall that for every sub-optimal arm j ∈Ksub, we have X>t βj <X
>
t βi∗ −h. Then, we can write

X>t (β̂i− β̂j)≥X>t β̂i∗ −X>t β̂j

>−h/2 +h = h/2 .

Thus, j /∈ K̂ for every sub-optimal arm j ∈Ksub. �

Finally, the next two lemmas bound the regret from time periods in (c) by separately summing

over expected regret when the all-sample tail inequality does and does not hold. We simplify

our notation by calling our all-sample estimators β̂ (Si,t−1, λ2,t−1) at time t as β̂i, where we recall

λ2,t = [φ2
0/(2s0)]

√
(log t+ logd)/(p∗C1t).
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Lemma EC.19. If t > C5, At holds, and we do not perform forced sampling, then the expected

regret at time t+ 1 is bounded by

(8Kbxmax)/t+ 8Kbxmax exp
[
−(p2∗C2(φ0)

2t)/32
]

+C3(φ0, p∗) · (log t+ logd)/t ,

where C3(φ0, p∗) = 1024KC0x
2
max/(p

3
∗C1(φ0)).

Proof of Lemma EC.19 Without loss of generality, assume that arm 1 is optimal:

arg maxi∈[K]X
>
t+1βi = 1. Then, the expected regret at time t+ 1 is given by

rt+1 =E

∑
i∈K̂

X>t+1(β1−βi)I[choose arm i]

≤E

∑
i∈K̂

X>t+1(β1−βi)I
[
X>t+1β̂i ≥X>t+1β̂1

] ,

where the last inequality uses the fact that event {i= arg maxj∈[K]X
>
t+1β̂j} is a subset of the event

{X>t+1β̂i ≥ X>t+1β̂1}, and that X>t+1(β1 − βi) ≥ 0 (since we have assumed that arm 1 is optimal).

Thus, we can bound rt+1 through the regret incurred by each arm in K̂ with respect to the optimal

arm independently of the other arms. We now define the event Bi ≡
{
X>t+1(β1−βi)> 2δxmax

}
,

where we take δ≡ 16
√

(log t+ logd)/(p3∗C1t) . Then, we can write

rt+1 ≤E

∑
i∈K̂

X>t+1(β1−βi)I
[
(X>t+1β̂i ≥X>t+1β̂1)∩Bi

]
+E

∑
i∈K̂

X>t+1(β1−βi)I
[
(X>t+1β̂i ≥X>t+1β̂1))∩Bc

i

] ,

which by definition of Bi and using X>t+1(β1−βi)≤ 2bxmax gives

rt+1 ≤ 2bxmaxE

∑
i∈K̂

I[(X>t+1β̂i ≥X>t+1β̂1)∩Bi]

+ 2δ xmaxE

∑
i∈K̂

I(Bc
i )

 , (EC.2)

Note that the intersection of event Bi and the event of choosing arm i 6= 1 implies that

0≥X>t+1β̂1−X>t+1β̂i >X
>
t+1

(
β̂1−β1

)
+X>t+1

(
βi− β̂i

)
+ 2δ xmax .

Thus, it must be that either X>t+1

(
β̂1−β1

)
<−δ xmax or X>t+1

(
βi− β̂i

)
<−δ xmax. Therefore,

Pr
[
(X>t+1β̂i ≥X>t+1β̂1)∩Bi

]
≤Pr

[
‖β1− β̂1‖1 > δ

]
+ Pr

[
‖β̂i−βi‖1 > δ

]
≤ 4

t
+ 4exp

[
−p

2
∗C

2
2

32
t

]
, (EC.3)

using a union bound and the tail inequality for the all sample estimator.
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We can also bound Pr [Bc
i ] using Assumption 2 on the margin condition: Pr [Bc

i ] =

Pr
[
X>t+1 (β1−βi)≤ 2δ xmax

]
≤ 2C0δ xmax. Using this and Eq. (EC.3) in Eq. (EC.2) we obtain

rt+1 ≤K
{

8bxmax

t
+ 8bxmax exp

[
−p

2
∗C

2
2

32
t

]
+ 4C0δ

2x2
max

}
≤ 8Kbxmax

t
+ 8Kbxmax exp

[
−p

2
∗C

2
2

32
t

]
+C3 ·

log t+ logd

t
. �

Lemma EC.20. The cumulative expected regret from using the all-sample estimator up to time T

is bounded by

[8Kbxmax +C3(φ0, p∗) logd] logT +C3(φ0, p∗) (logT )
2

+C4(φ0, p∗) ,

where C4(φ0, p∗) = (8Kbxmax)/(1− exp
[
−p2∗C2(φ0)

2

32

]
).

Proof of Lemma EC.20 We sum regret from Lemma EC.19

T−1∑
t=C5

[
(8Kbxmax)/t+ 8Kbxmax exp

[
−p

2
∗C2(φ0)

2

32
t

]
+C3(φ0, p∗)(log t+ logd)/t

]
≤ [8Kbxmax +C3(φ0, p∗) logd] logT +C3(φ0, p∗) (logT )

2
+C4(φ0, p∗) . �

EC.6. Additional Simulations

EC.6.1. Dependence on K, d, and s0

First, we study how the LASSO Bandit’s cumulative expected regret scales as a function of each

parameter K, d, and s0. The results (see Figure EC.1) show that the regret appears to grow

logarithmically with d, but almost linearly with K and s0.

(a) K = 10, s0 = 2 (b) d= 20, s0 = 2 (c) d= 500, K = 2

Figure EC.1 These plots show how the regret of the LASSO Bandit scales as any single parameter d,K, s0 is
varied while the others are fixed.
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EC.6.2. Robustness to Algorithm Inputs

We now study the cumulative expected regret of the LASSO Bandit while varying any one of: (i)

the forced sampling parameter q ∈ {1, 2, 5}, (ii) the localization parameter h∈ {1,5, 25}, and (iii)

the regularization coefficient c∈ {0.02, 0.05, 0.1, 0.2}. We only focus on scenario (a) from above.

The results are computed over T = 10,000 time steps and averaged over 30 trials (see Figure

EC.2). We find that the cumulative regret performance is not substantially impacted despite exper-

imenting with the parameters by up to an order of magnitude; this suggests that the LASSO Bandit

is robust, which is important since input parameters are likely to be misspecified in practice.

(a) (b) (c)

Figure EC.2 Cumulative regret for the LASSO Bandit for varying values of (a) the forced sampling parameter
q, (b) the localization parameter h, and (c) the coefficient c of the regularization parameters.

EC.6.3. Nonlinear Reward Function

Another interesting direction is considering nonlinear reward functions. The LASSO Bandit can

be used in conjunction with basis expansion methods from statistical learning to approximate any

nonlinear function (Hastie et al. 2001). Specifically, given a covariate vector X = (x1, . . . , xd), we

can consider a large vector with length O(dn) consisting of all distinct monomials of maximum

degree at most n, denoted by X⊗n. Then we can use a linear model with covariate vector X⊗n to

approximate a reward function that is up to a nth-degree polynomial in X. Assuming that the true

model is a sparse function of these monomials (i.e., the reward only depends on s0 entries of X⊗n),

the LASSO Bandit algorithm could be employed. From a theoretical perspective, one has to study

the behavior of the constant φ0 for the compatibility condition of the covariance matrix of X⊗n
in order to prove theoretical guarantees for this approach; however, such an analysis is beyond the

scope of this paper and we simply empirically test the approach. We repeat scenario (a) from above

(K = 2, d= 100, s0 = 5) where the true reward function of each arm is a (distinct) polynomial of
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degree n= 3. We compare two versions of the LASSO Bandit: (1) näıve-LASSO Bandit that uses

only the raw covariates X and does not expand them to X⊗3, and (2) NL-LASSO Bandit that

uses X⊗3. For comparison, we also include a nonlinear version of the other bandit algorithms that,

similar to NL-LASSO Bandit, use the expanded covariate vector and refer to them by NL-OLS-

Bandit, NL-OFUL-LS, and NL-OFUL-EG respectively. Figure EC.3 shows the results. NL-LASSO

Bandit outperforms all other methods. It is interesting to see that the näıve-LASSO Bandit is

competitive for small t since it avoids overfitting more effectively with a smaller covariate space;

however, the regret is linear since its model is misspecified, and it loses to the other approaches as

T grows.

Figure EC.3 Comparison of all methods with parameters as in Figure 1(a), but the reward functions are poly-
nomials of degree 3. The suffix NL means that the algorithm uses the expanded version of the
covariate vector that contains all monomials of degree at most 3.

EC.6.4. When Assumptions 2 and 3 Fail

We now study two settings where some of the assumptions required by our theory fail. First, we

look at Assumption 3 (arm optimality). We consider K = 3, d = 100, s0 = 2, β1 = [1,1,0, . . . ,0],

β2 = [0,0,1,1,0, . . . ,0], and β3 = r(β1+β2)/2 for r ∈ {0.9, .99,1,1.01,1.1}. In this situation, when r is

close or equal to 1, the arm optimality condition fails for arm 3. Figure EC.4 shows that performance

of the LASSO Bandit is robust as r varies around 1. However, there is a small but noticeable loss

when r = 1.1, which is due to the failure of the arm optimality condition. In particular, there are

cases where arm 3 is the optimal arm and we incur regret if it is not played; however, the magnitude

of this regret (relative to pulling the second best arm) is small, making the overall loss from the

assumption’s failure small. This simulation suggests that Assumption 3 could possibly be relaxed

at the expense of a more cumbersome regret analysis.
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Figure EC.4 Performance of LASSO Bandit when arm optimality condition fails (when an arm is r times a
convex combination of the other two arms).

Next, we study Assumption 2 (the margin condition). We consider K = 2, d= 10, s0 = 3, β1 =

[1,0,1,0, . . . ,0] and β2 = [1,1,1,0, . . . ,0]. The covariates are generated according to the following

procedure. First, a (d−2)-dimensional vector X̃ is sampled from the truncated normal (as above).

Then, we add two coordinates at the beginning based on sampling a random variable U from the

uniform distribution on [−1,1], independent of X̃. Then, our d-dimensional covariate vector X is

given by

X(r) =


1 if r= 1
sign(U)|U |1+ε if r= 2

X̃(r) if r > 2 .

Now, note that

Pr
[
0< |X>(β1−β2)|<κ

]
= Pr [0< |X(2)|<κ]

= Pr
[
0< |U |1+ε <κ

]
= 2(κ)

1
1+ε >κ

1
1+ε ,

which implies that the margin condition fails for any ε > 0. We simulate the LASSO Bandit for

ε∈ {0,1} and the results are shown in Figure EC.5. When ε= 0 (margin condition holds) the regret

grows at a slower rate than when ε= 1 (margin condition fails). In fact, when d= 1, Goldenshluger

and Zeevi (2009) prove a lower bound that the regret scales as O
(
T

ε
2(1+ε)

)
for ε > 0. Generalizing

a variant of their result to d> 1 is an open direction, but matches our simulation results.

EC.7. OLS Bandit Algorithm and Analysis

In this section, we propose the OLS Bandit, which is a variant of the algorithm by Goldenshluger

and Zeevi (2013) for the low-dimensional setting. We then apply the analytical tools we developed in

the proof of the LASSO Bandit to prove an upper bound of O
(
d2 log

3
2 d · logT

)
on the cumulative

expected regret of the OLS Bandit; this is an improvement over the existing O(d3 logT ) bound.
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Figure EC.5 Performance of the LASSO Bandit when the margin condition holds (ε = 0) versus when it fails
(ε= 1). In the latter case, the probability of observing covariate vectors that lie within a margin κ
of the decision boundary is of order

√
κ.

Remark EC.1. Our analysis yields a better bound because we employ matrix martingale concen-

tration results (Tropp 2015) to bound the difference of the true and sample covariance matrices,

i.e., ‖Σ̂− Σ‖∞; in contrast, Goldenshluger and Zeevi (2013) rely on applying the union bound,

which contributes an extra factor of d.

Assumptions. We make similar but weaker assumptions on the problem formulation as Gold-

enshluger and Zeevi (2013). In particular, prior work only allowed for two arms and required each

arm to be optimal for some subset of users; in contrast, our formulation tackles the K-armed bandit

and further allows for some arms Ksub to be uniformly sub-optimal.

Consequently, we make the same assumptions as that of the LASSO Bandit (including Assump-

tions 1-3 in §2.1) but we replace Assumption 4 on the LASSO compatibility condition with the

following stronger requirement of positive-definiteness:

Assumption EC.1 (Positive-Definiteness). Define Σi ≡E [XX> |X ∈Ui] for all i∈ [K]. Then,

there exists a deterministic constant φ0 ∈ R+ such that for all i ∈ [K] the minimum eigenvalue

λmin (Σi)≥ φ2
0 > 0.

OLS Estimation. Recall the notation we established in §3.1. Consider a linear model Y =

Xβ + ε, with design matrix X ∈ Rn×d, response vector Y ∈ Rn, and noise vector ε ∈ Rn whose

entries are independent σ-subgaussian random variables.

Definition EC.1 (OLS). If Σ̂(X) = X>X/n is positive definite, the OLS estimator for the

parameter β is defined by:

β̂X,Y ≡
(
X>X

)−1
X>Y . (EC.4)

The OLS estimator converges with high probability according to the following tail inequality.
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Proposition EC.1 (OLS Tail Inequality). Let Xt denote the tth row of X and Y (t) denote the

tth entry of Y . Also, assume that {Xt : t= 1, ..., n} forms an adapted sequence of observations, i.e.,

Xt may depend on past regressors and their resulting observations {Xt′ , Y (t′)}t−1t′=1. If all realizations

of random variables Xt satisfy ‖Xt‖∞ ≤ xmax, the following tail inequality holds for all χ > 0 and

all constants φ> 0:

Pr
[
‖β̂−β‖1 ≤ χ

]
≥ 1− exp

[
−C̃1(φ)nχ2 + log 2d

]
−Pr

[
λmin

(
Σ̂(X)

)
≤ φ2

]
,

where we define C̃1(φ)≡ φ4/ (2d2x2
maxσ

2).

Algorithm. We introduce the OLS Bandit algorithm below (Algorithm 2), which proceeds

analogously to the LASSO Bandit (Algorithm 1). In particular, we define and use the forced-sample

sets Ti,t and all-sample sets Si,t in the same way. The key difference is that we now use OLS instead

of LASSO estimation (note that we no longer require a path of regularization parameters).

Algorithm OLS Bandit

Input parameters: q,h
Initialize Ti,0 and Si,0 by the empty set, and β̂(Ti,0) and β̂(Si,0) by 0∈Rd for all i in [K]
Use q to construct force-sample sets Ti using Eq. (2) for all i in [K]
for t∈ [T ] do

Observe Xt ∼PX
if t∈ Ti for any i then

πt← i
else
K̂=

{
i∈K

∣∣ X>t β̂(Ti,t−1)≥maxj∈[K]X
>
t β̂(Tj,t−1)−h/2

}
πt← arg maxi∈K̂X

>
t β̂(Si,t−1)

end if
Sπt,t←Sπt,t−1 ∪{t}
Play arm πt, observe Y (t) =X>t βπt + εi,t

end for

EC.7.1. New Upper Bound on Regret of OLS Bandit

Theorem EC.1. When q ≥ 4dq̃0e, K ≥ 2, d > 2, and T ≥ (Kq)2, we have an upper bound on the

expected cumulative regret at time T :

RT ≤ 2qKbxmax(6 logT +Kq) + 2Kbxmax +
8Kmax(C0,1)x2

max[log(12d)]3/2

C̃3

logT + C̃4Kbxmax

=O
(
d2[logd]3/2 · logT

)
,

where constants C̃1 = C̃1(φ0), C̃2 = C̃2(φ0), C̃3 = C̃3(φ0, p∗), and C̃4 = C̃4(φ0, p∗) are defined by

C̃1 ≡
φ4
0

2d2x2
maxσ

2
, C̃2 ≡min(

1

2
,
φ2
0

8x2
max

), C̃3 ≡
p3∗C̃1

256
, and C̃4 ≡

8

1− exp
[
−C̃2

p2∗
64

] ,
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C0 is defined in Assumption 2, and we take

q̃0 ≡max

{
20

p∗
,
8 logd

p∗C̃2

,
1024x2

max log 2d

h2p2∗C̃1

}
=O

(
d2 logd

)
.

Key Steps. The proof strategy is similar to that of the LASSO Bandit. First, we prove a technical

lemma (analogous to Lemma 1) that shows a tail inequality holds for the OLS estimator if only

a constant (but unknown) fraction of the rows of the design matrix are independent (Lemma

EC.21). We use this lemma to prove analogous tail inequalities for the forced-sample estimator

(Proposition EC.2) and the all-sample estimator (Proposition EC.3) in §EC.7.4. Finally, we use

these tail inequalities to sum up the expected regret contributions from the three groups of time

periods:

(a) Initialization (t≤ (Kq)2) and forced sampling (t∈ Ti,T for some i∈ [K]).

(b) Times t > (Kq)2 when the event At−1 does not hold.

(c) Times t > (Kq)2 when the event At−1 holds and we do not perform forced sampling, i.e., the

OLS Bandit plays the estimated best arm from K̂ using the all-sample estimator.

Summing the results concludes the proof of Theorem EC.1. The proof is given in §EC.7.5.

EC.7.2. OLS Tail Inequality for Adapted Observations

Proof of Proposition EC.1 For simplicity, we start with the `2 norm. Note that, if the event

λmin

(
Σ̂(X)

)
>φ2 holds,

‖β̂−β‖2 = ‖(X>X)−1X>ε‖2

≤ ‖(X>X)−1‖2 · ‖X>ε‖2

=
1

nφ2
‖X>ε‖2 .

Then, for any χ̃ > 0, we can write

Pr
[
‖β̂−β‖2 ≤ χ̃

]
≥Pr

[(
‖X>ε‖2 ≤ nχ̃φ2

)
∩
(
λmin

(
Σ̂(X)

)
>φ2

)]
≥ 1−

d∑
r=1

Pr

[
|ε>X(r)|> nχ̃φ2

√
d

]
−Pr

[
λmin

(
Σ̂(X)

)
≤ φ2

]
,

where we have let X(r) denote the rth column of X. We can expand ε>X(r) =
∑

t∈[n] ε(t)Xt(r), where

we note thatDt,r ≡ ε(j)Xj(r) is a (xmaxσ)-subgaussian random variable by Definition 1, conditioned

on the sigma algebra St−1 that is generated by random variables X1, . . . ,Xt−1, Y (1), . . . , Y (t− 1).

Defining D0,r = 0, the sequence D0,r,D1,r, . . . ,Dn,r is a martingale difference sequence adapted to

the filtration S1 ⊂ ...⊂Sn since E[ε(t)Xt(r)|St−1] = 0. Using Lemma EC.1,

Pr
[
‖β̂−β‖2 ≤ χ̃

]
≥ 1−

d∑
r=1

Pr

[
|ε>X(r)|> nχ̃φ2

√
d

]
−Pr

[
λmin

(
Σ̂(X)

)
≤ φ2

]
≥ 1− 2d exp

[
− nχ̃2φ4

2dx2
maxσ

2

]
−Pr

[
λmin

(
Σ̂(X)

)
≤ φ2

]
.
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Now, to bound the `1 norm, we can use Cauchy-Schwarz to write (for χ̃= χ/
√
d)

Pr
[
‖β̂−β‖1 ≤ χ

]
≥Pr

[
‖β̂−β‖2 ≤ χ̃

]
≥ 1− 2d exp

[
− nχ̃2φ4

2dx2
maxσ

2

]
−Pr

[
λmin

(
Σ̂(X)

)
≤ φ2

]

= 1− exp

− φ4

2d2x2
maxσ

2︸ ︷︷ ︸
C̃1(φ)

nχ2 + log(2d)

−Pr
[
λmin

(
Σ̂(X)

)
≤ φ2

]
. �

EC.7.3. Positive-Definiteness for non-i.i.d. samples

In this section we prove a tail inequality for OLS with non-i.i.d. data, analogous to the result of

§4.1. In particular, consider a linear model Y = Zβ+ ε, with random design matrix Z∈Rn×d such

that all realizations of Z satisfy ‖Z‖∞ ≤ xmax, response vector Y ∈ Rn, and noise vector ε ∈ Rn

whose entries are independent σ-subgaussian random variables. Consider a fixed subset A of [n],

and if A′ ⊂A is such that {Zt | t∈A′} is an i.i.d. subset of random variables with distribution PZ
with λmin(E[ZZT ]) = φ2

1 and |A′|/|A| ≥ p/2 for positive constants φ1 and p. Similar to §3.1, we use

the short notation β̂(A) and Σ̂(A) to refer to the OLS estimator and sample covariance matrix

on the set A. In this section, we will show that Σ̂(A) is positive-definite with minimum eigenvalue

bounded below by φ2
1p/4 =

(
φ1
√
p/2
)2

with high probability, and then apply Proposition EC.1 to

obtain the following result.

Lemma EC.21. Under the assumptions above, the following tail inequality holds for all χ> 0:

Pr
[
‖β̂(A)−β‖1 ≥ χ

]
≤ exp

[
−C̃1

(
φ1
√
p

2

)
|A|χ2 + log 2d

]
+ exp

[
−pC̃2(φ1)|A|/2 + logd

]
,

where C̃1 and C̃2 are defined in §EC.7.1.

Before formally proving Lemma EC.21, we state and prove some results.

First, we will show that Σ̂(A′) has minimum eigenvalue bounded below with high probability.

Lemma EC.22. The minimum eigenvalue of Σ̂(A′) is bounded below by φ2
1/2 with probability 1−

exp
[
−C̃2(φ1)|A′|+ logd

]
.

Proof of Lemma EC.22 First, note that

λmax

(
Σ̂(A′)

)
= max
‖u‖=1

u>Σ̂(A′)u

= max
‖u‖=1

1

|A′|
∑
t∈A′

(Z>t u)2 ≤ x2
max
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Then, it follows from the matrix Chernoff inequality, Corollary 5.2 in Tropp (2015), that

Pr

[
λmin(Σ̂(A′))> φ2

1

2

]
≥ 1− d · exp

[
−|A

′|φ2
1

8x2
max

]
≥ 1− exp

[
−C̃2(φ1)|A′|+ logd

]
, if we take δ= 1/2 and R= x2

max. �

Lemma EC.23. If the minimum eigenvalue of Σ̂(A′) is bounded below by φ′21 , then the minimum

eigenvalue of Σ̂(A) is bounded below by φ′21 |A′|/|A|.

Proof of Lemma EC.23 From our definition, we can write

Σ̂(A) =
|A′|
|A|

Σ̂(A′) +
1

|A|
∑

t∈A/A′
ZtZ

>
t

=
|A′|
|A|

Σ̂(A′) +
|A \A′|
|A|

Σ̂(A\A′) .

Now, using the fact that the minimum eigenvalue is a concave function, it immediately follows that

λmin

(
Σ̂(A)

)
≥ |A

′|
|A|

λmin

(
Σ̂(A′)

)
+
|A \A′|
|A|

λmin

(
Σ̂(A\A′)

)
≥ |A

′|
|A|

φ′21 ,

where the last inequality relies on the fact that Σ̂(A\A′) is always positive semi-definite. �

Now, we are ready to prove the main result of this section.

Proof of Lemma EC.21 Combining Lemmas EC.22 and EC.23, and using |A′| ≥ p|A|/2 implies

that

Pr

[
λmin

(
Σ̂(A)

)
≤ φ2

1p

4

]
≤ exp

[
−pC̃2(φ1)|A|/2 + logd

]
.

Now, we can apply Proposition EC.1 with φ= φ1
√
p/2 to obtain the result. �

EC.7.4. Proof of Tail Inequalities for OLS Force-Sample and All-Sample Estimators

Proposition EC.2. When t≥ (Kq)2, the forced sample estimator β̂(Ti,t) satisfies the tail inequal-

ity

Pr

[
‖β̂ (Ti,t)−βi‖1 >

h

4xmax

]
≤ 4

t4
.

Proof of Proposition EC.2 Since forced-sampling schedule is the same as LASSO Bandit, using

Lemma EC.8, |Ti,t| ≥ (q/2) log t ≥ 2q̃0. Also, by Assumption EC.1, Σi has minimum eigenvalue

bounded below by φ2
0. If |T ′i,t|/|Ti,t| ≥ p∗/2, Lemma EC.9 allows us to apply Lemma EC.21, with

χ= h/(4xmax), to show that

Pr

[
‖β̂ (Ti,t)−βi‖1 >

h

4xmax

]
≤ exp

[
−C̃1

(
φ0
√
p∗

2

)
|Ti,t|

h2

16x2
max

+ log 2d

]
+ exp

[
−p∗C̃2(φ0)|Ti,t|/2 + logd

]
≤ exp

[
−q̃0 log t · p

2
∗C̃1(φ0)h

2

128x2
max

+ log 2d

]
+ exp

[
−p∗C̃2(φ0)q̃0 log t+ logd

]
.
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Combining this with the probability that |T ′i,t|/|Ti,t| ≥ p∗/2 (Lemma EC.10), and using a union

bound gives

Pr

[
‖β̂ (Ti,t)−βi‖1 >

h

4xmax

]
≤ exp

[
−q̃0 log t · p

2
∗C̃1(φ0)h

2

128x2
max

+ log 2d

]
+ exp

[
−p∗C̃2(φ0)q̃0 log t+ logd

]
+ 2/t4 .

Now, using definition of q̃0, in particular

q̃0 ≥
8 logd

p∗C̃2

and q̃0 ≥
1024x2

max log 2d

h2p2∗C̃1

,

and the fact that d> 2 and t > (Kq)2, the result follows. �

We again define the event At in the same way as (3) in order to prove the tail inequality for the

all-sample OLS estimator.

Proposition EC.3. When t ≥ (Kq)2, for i ∈ Kopt, the all-sample estimator β̂(Si,t) satisfies the

tail inequality

Pr
[
‖β̂ (Si,t)−βi‖1 ≤ χ

]
≥ 1− exp

[
−tχ2 p

3
∗C̃1(φ0)

256
+ log 2d

]
− 2exp

[
−C̃2(φ0)

p2∗
64
t+ logd

]
.

Proof of Proposition EC.3 First, we note that Lemma EC.12 holds for the OLS estimator as

well since the forced-sample tail inequality for the OLS estimator (Proposition EC.2) is slightly

stronger than the forced-sample tail inequality for the LASSO estimator (Proposition 2), 5/t4

versus 4/t4 error bound.

From Lemma EC.13, we have that at time t≥ (Kq)2, each of {1, ..., t} \ ∪Kj=1Tj,t belongs to S ′i,t
with probability at least p∗/2. Applying Lemma EC.14 and Lemma EC.21 with p = p∗/2 and

|A| ≥ p∗t/4, we get, using a union bound,

Pr
[
‖β̂ (Si,t)−βi‖1 >χ

]
≤ exp

[
−C̃1

(
φ0

√
p∗/2

2

)
tp∗
4
χ2 + log 2d

]
+ exp

[
− C̃2(φ0)p∗t

16
+ logd

]
+ exp

[
− p2∗

128
t

]

≤ exp

[
−tχ2 p

3
∗C̃1(φ0)

256
+ log 2d

]
+ 2exp

[
−C̃2(φ0)

p2∗
64
t+ logd

]
,

where we have used C̃2(φ0)≤ 1/2 in the last step. �

EC.7.5. Bounding the Regret in the Low-Dimensional Setting

We can now use the above tail inequalities to sum up the expected regret contributions from the

three groups of time periods:
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(a) Initialization (t≤ (Kq)2) or forced sampling (t∈ Ti,T for some i∈ [K]).

(b) Times t > (Kq)2 when the event At−1 does not hold.

(c) Times t > (Kq)2 when the event At−1 holds and we do not perform forced sampling, i.e., the

OLS Bandit plays the estimated best arm from K̂ using the all-sample estimator.

We first note that the regret bounds of §EC.5 for groups (a) times where t ≤ (Kq)2 or we are

force-sampling, and (b) time periods where At−1 does not hold can be re-used. This is because the

forced-sampling schedule is the same and the tail inequality we prove for the OLS forced-sample

estimator is strictly stronger than the tail inequality for the LASSO forced-sample estimator. We

now focus on bounding the regret from time periods (c) when t > (Kq)2, we are not force-sampling,

and At−1 holds.

In this section, we simplify our notation by letting β̂i = β̂ (Si,t) for all i∈ [K]. We also define the

constant C̃3(φ0, p∗) = p3∗C̃1(φ0)/256, but to simplify the notation, drop the references to φ0 and p∗

in all constants C̃1, C̃2, . . . since the values for φ0 and p∗ will be fixed in the remaining.

Lemma EC.24. If Algorithm 2 does not use the forced-sample estimator and At−1 holds, then the

expected regret at time t is bounded by

8Kmax(C0,1)x2
max[log(12d)]3/2

tC̃3

+ 8Kbxmaxe
−C̃2

p2∗
64 t .

Proof of Lemma EC.24 Recall from Lemma EC.18 that since At−1 holds, the set K̂ contains

the optimal arm i∗ = arg maxi∈[K]X
>
t βi and no sub-optimal arms from the set Ksub. Without loss

of generality, assume that arm 1 is optimal, i.e., 1 = arg maxi∈{1,...,K}X
>
t βi. Then, the expected

regret at time t is given by

E[rt] =E

 ∑
i∈K̂,i6=1

X>t (β1−βi) · I
[
i= arg max

j∈{1,...,K}
X>t β̂j

]
≤E

 ∑
i∈K̂,i6=1

X>t (β1−βi) I
[
X>t β̂i >X

>
t β̂1

]
where the inequality follows from the fact that the event where i = arg maxj∈{1,...,K}X

>
t β̂j is a

subset of the event X>t β̂i >X>t β̂1, and that E [X>t (β1−βi)]≥ 0 (since we have assumed that arm

1 is optimal). Thus, we can bound rt through the regret incurred by each arm with respect to the

optimal arm independently of the other arms. We now define, for each r= 0,1,2,3, . . . the event

Bi
r =
{

2xmaxrδ≤X>t (β1−βi)< 2xmax(r+ 1)δ
}

where δ is a parameter we will choose later to minimize regret. Note that, since X>t (β1 − βi) <
2xmaxb, B

i
r is empty for r+ 1> b/δ. Then, we can write

E[rt]< 2xmaxδE

bb/δc−1∑
r=0

(r+ 1)
∑

i∈K̂,i6=1

I
[
(X>t β̂i >X

>
t β̂1)∩Bi

r

] (EC.5)
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by the definition of Bi
r.

Note that the event (X>t β̂i >X
>
t β̂1)∩Bi

r for i 6= 1 implies that

0>X>t β̂1−X>t β̂i

=
[
X>β̂1−X>t β1

]
+
[
X>t βi−X>t β̂i

]
+
[
X>t β1−X>t βi

]
≥
[
X>t

(
β̂1−β1

)]
+
[
X>t

(
βi− β̂i

)]
+ 2xmaxrδ .

Thus, it must be that either X>t

(
β̂1−β1

)
>xmaxrδ or X>t

(
βi− β̂i

)
>xmaxrδ which means, using

a union bound,

Pr
[
(X>t β̂i >X

>
t β̂1)∩Bi

r

]
≤Pr

[
(X>t

(
β̂1−β1

)
>xmaxrδ)∩Bi

r

]
+ Pr

[
(X>t

(
βi− β̂i

)
>xmaxrδ)∩Bi

r

]
≤Pr

[
(‖β1− β̂1‖1 > rδ)∩Bi

r

]
+ Pr

[
(‖β̂i−βi‖1 > rδ)∩Bi

r

]
= Pr

[
‖β1− β̂1‖1 > rδ

]
Pr
[
Bi
r

]
+ Pr

[
‖β̂i−βi‖1 > rδ

]
Pr
[
Bi
r

]
.

Note that the last equality uses the fact that event Bi
r depends on the randomness of Xt that is

completely independent of past samples that impact the randomness of β̂1 and β̂i.

Next, recall that the tail inequality (Proposition EC.3) implies that for all j ∈ K̂, and all r, δ≥ 0,

Pr
[
‖βj − β̂j‖1 > rδ

]
≤min

{
1, exp

[
−C̃3r

2δ2t+ log 2d
]

+ 2exp

[
−C̃2

p2∗
64
t

]}
.

Combining this with the fact that, via Assumption 2 on margin condition,

Pr[Bi
r]≤Pr

[
X>t (β1−βi)≤ 2xmax(r+ 1)δ

]
≤ 2C0xmax(r+ 1)δ ,

we get,

Pr
[
(X>t β̂i >X

>
t β̂1)∩Bi

r

]
≤ 2Pr[Bi

r]min

{
1, e−C̃3r

2δ2t+log 2d + 2e−C̃2
p2∗
64 t

}
≤ 2Pr[Bi

r]min
{

1, e−C̃3r
2δ2t+log 2d

}
+ 4Pr[Bi

r]e
−C̃2

p2∗
64 t

≤ 4C0xmax(r+ 1)δmin
{

1, e−C̃3r
2δ2t+log 2d

}
+ 4Pr[Bi

r]e
−C̃2

p2∗
64 t

≤ 4C0xmax(r+ 1)δmin
{

1, e−C̃3r
2δ2t+log 2d

}
+ 4e−C̃2

p2∗
64 t . (EC.6)

Note that, for a large r the term e−C̃3tr
2δ2+log 2d will be small. Therefore, we will use the term 1 for

small r and the second term for large r. Combining (EC.5) and (EC.6), setting δ = 1/
√
C̃3t, and

defining

R≡R(d, t, δ) =
⌊√

log(12d)
⌋
,
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we have

E[rt]≤
8KC0x

2
max

tC̃3

 R∑
r=0

(r+ 1)2 + 2d

bb
√
C̃3tc−1∑

r=R+1

(r+ 1)2e−r
2

+

8Kbxmax√
C̃3t

bb
√
C̃3tc−1∑

r=R+1

(r+ 1)e−C̃2
p2∗
64 t


≤ 8KC0x

2
max[log(12d)]3/2

tC̃3

+
16Kdx2

max

tC̃3

bb
√
C̃3tc−1∑

r=R+1

(r+ 1)2e−r
2

+ 8Kbxmaxe
−C̃2

p2∗
64 t .

Now, note that

∞∑
r=R+1

(r+ 1)2e−r
2

≤ 4
∞∑

r=R+1

r2e−r
2

≤ 4

∫ ∞
R

u2e−u
2

du

= 2Re−R
2

+ 2

∫ ∞
R

e−u
2

du

where the second inequality follows from Lemma EC.16 and the equality is via integration by parts.

Therefore,

∞∑
r=R+1

(r+ 1)2e−r
2

≤ 2Re−R
2

+ 2

∫ ∞
R

( u
R

)
e−u

2

du

= 2Re−R
2

+
e−R

2

R

≤
√

log(12d)

3d
.

Summarizing,

E[rt]≤
8KC0x

2
max[log(12d)]3/2

tC̃3

+
6Kx2

max[log(12d)]1/2

tC̃3

+ 8Kbxmaxe
−C̃2

p2∗
64 t

≤ 8Kmax(C0,1)x2
max[log(12d)]3/2

tC̃3

+ 8Kbxmaxe
−C̃2

p2∗
64 t . �

Lemma EC.25. The cumulative expected regret from the time periods in group (c), times t∈ [T ] \
[(Kq)2] when the event At−1 holds and we do not perform forced sampling, is bounded by

8Kmax(C0,1)x2
max[log(12d)]3/2 logT

C̃3

+ C̃4Kbxmax ,

where

C̃4 =
8

1− exp
[
−C̃2

p2∗
64

] .
Proof of Lemma EC.25 Using Lemma EC.24,

T∑
t=(Kq)2+1

E[rt]≤
8Kmax(C0,1)x2

max[log(12d)]3/2 logT

C̃3

+
8Kbxmax

1− exp
[
−C̃2

p2∗
64

] . �

Summing up the regret contributions from the previous subsection gives us our main result.
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Proof of Theorem EC.1 The total expected cumulative regret of the OLS Bandit up to time T

is upper-bounded by summing all the terms from Lemmas EC.15, EC.17, and EC.25):

RT ≤ 2qKbxmax(6 logT +Kq) + 2Kbxmax +
8Kmax(C0,1)x2

max[log(12d)]3/2 logT

C̃3

+ C̃4Kbxmax . �


