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Abstract

We describe the current content moderation strategy employed by Meta to remove
policy-violating content from its platforms. Meta relies on both handcrafted and
learned risk models to flag potentially violating content for human review. Our
approach aggregates these risk models into a single ranking score, calibrating
them to prioritize more reliable risk models. A key challenge is that violation
trends change over time, affecting which risk models are most reliable. Our system
additionally handles production challenges such as changing risk models and novel
risk models. We use a contextual bandit to update the calibration in response to
such trends. Our approach increases Meta’s top-line metric for measuring the
effectiveness of its content moderation strategy by 13%.

1 Introduction

Meta has nearly 3.71 billion (monthly) active users worldwide, with billions of pieces of content
shared by users every day [Meta, 2022c]. While most content is benign, a small share—e.g., hate
speech, promoting terrorism, or graphic pornography—violates the platform’s community standards.
Thus, a key goal is to promptly remove such content.

Determining whether a piece of content is policy-violating is a difficult decision that often requires
manual review, making it challenging to scale to Meta’s prolific content streams. As of December
2021, over 2 million pieces of content are reviewed per day by around 15,000 human reviewers across
the globe [Meta, 2022b]. Clearly, manually reviewing all content is infeasible; thus, Meta relies
heavily on risk models (based on machine learning or handcrafted rules) to flag potentially violating
content pieces. A subset of this content is deemed unambiguously violating and is automatically
removed; the remainder undergoes manual review (see Fig. 1).

To maximize the amount of violating content removed given a fixed supply of human reviewers, we
dynamically prioritize content likely to have wide reach and high severity (quantified by a metric
called integrity value; see Section 2). Initial efforts designed separate risk scores for different content
violation types (e.g., one for violations of the nudity policy, one for hate speech, etc.), allocating
a fixed, pre-determined reviewer capacity to each type [Schroepfer, 2019]. However, this strategy
was unable to adapt to the nonstationary and quickly varying violation trends—i.e., violating content
constantly changes in appearance, focus, and wording. Exacerbating this issue, users trying to post
violating content are adversarial, attempting to evade detection. Thus, the performances of the
different risk models are constantly changing. Models require significant expertise and effort to
retrain and can only be updated periodically, and new risk models are frequently added for emerging
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Figure 1: Decision Flow Diagram for Content Moderation. This paper describes how we optimize
reviewer capacity by prioritizing within the subset of potentially policy-violating content flagged by
many risk models (circled in blue).

Figure 2: Centralized Bandit Approach for Content Moderation. The bandit algorithm dynamically
aggregates the outputs of many different violation-specific risk models to learn a prioritization ranking
that maximizes integrity value.

trends—e.g., to capture the use of emojis in discussions of English football to detect a recent wave of
racist comments directed at black football players [Criddle, 2021].

Thus, Meta moved to a single holistic ranker “Whole Post Integrity Embeddings” (WPIE), a pretrained
universal representation of content across modalities and violation types [Schroepfer, 2019, Halevy
et al., 2022]. It resulted in significant performance improvements in production [Schroepfer, 2019,
Rosen, 2019], and is the baseline our work improves upon. An important drawback is that, although
more accurate overall, it lacked precision for specific types of violations compared to the risk model
tailored to that type. Furthermore, while it was periodically retrained to handle evolving trends, it did
not incorporate sufficient exploration of new violation types to ensure sufficient responsiveness to
new trends.

To address these challenges, we have designed and deployed a bandit approach that combines the full
set of available risk models into a single risk score; importantly, it calibrates the scores to prioritize
ones with higher quality, doing so dynamically to respond to new trends (see Fig. 2). A key challenge
is bandit feedback: we only observe the true severity of a piece of content when it is reviewed by
a human. Thus, we must actively explore different types of content to obtain ground truth data on
the accuracy of different risk models. Finally, the scale of the problem imposes constraints on the
techniques we can leverage—we must ensure that our system can assess a large number of content
every minute for potential violations under computational cost and latency constraints.

In detail, we use a nonstationary, batched contextual bandit that treats the various risk models as
features for predicting severity. We address two key production-related challenges that differ from
existing approaches. First, for a given piece of content, our prediction of its reach (and therefore
potential prevalence) evolves over time as it is viewed and shared by users. However, traditional
bandit algorithms assume that features are static. We incorporate the bandit into a queuing framework,
where the queue priority is determined by both the predicted severity as well as the velocity of its
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predicted reach. Second, we must incorporate new risk models (i.e., features) seamlessly despite the
fact that we cannot retrain our severity predictions online due to production constraints. Together,
our approach effectively learns an estimate of severity that dynamically adapts to changes in the
environment despite production constraints. Our approach has been deployed at scale at Meta,
increasing the top-line metric of Integrity Value (which quantifies the impact of removing violating
content accounting for severity and potential reach) by 13% compared to the previous WPIE approach.

Related Work. AI has become a promising strategy for ensuring content integrity [Halevy et al.,
2022]—e.g., natural language processing is widely used to identify abusive language, hate speech,
and cyber-bullying [Nobata et al., 2016, Zhong et al., 2016, Hosseinmardi et al., 2015, Djuric et al.,
2015, Burnap and Williams, 2016, Chen et al., 2012, Gambäck and Sikdar, 2017, Ma et al., 2016,
Van Hee et al., 2018, Noorshams et al., 2020]. Our work addresses this problem using contextual
bandits, which has previously been applied in settings such as news article recommendations [Li
et al., 2010] and personalized healthcare [Bastani and Bayati, 2020, Tewari and Murphy, 2017].
Building on the Upper Confidence Bound (UCB) algorithm [Auer and Ortner, 2010, Chu et al.,
2011], our bandit incorporates techniques to handle nonstationarity [Besbes et al., 2014] and batched
predictions [Perchet et al., 2016, Gao et al., 2019]. We also address several novel practical challenges.
First, we propose a simple approach to compute uncertainty online, dramatically improving scalability.
Second, our approach can dynamically incorporate new risk models that increase the dimension of
our contexts.

2 Problem Formulation

Content arrival process. We assume content arrives sequentially. At each step t, content ct arrives,
and we observe its features xt = φ(ct) ∈ Rd; each feature is the output of a model that predicts the
real-valued risk of ct for a given violation type (e.g., hate speech). These features are built by various
teams at Meta, and range from machine learning algorithms trained on reviewers’ historical labels,
to simple classifiers based on regular expressions to flag violating phrases. Each piece of content
receives d predicted risk scores (from each of these models), which are then concatenated to form xt.

Manual review decisions. Next, our system must decide whether to have a reviewer label ct. We
formalize this process as a one-armed bandit [Woodroofe, 1979], where the arm is the action

at = 1(mark ct for manual review),

and 1 is the indicator function. That is, pulling the arm corresponds to having a reviewer manually
examine ct, and not pulling it corresponds to leaving the content up without review.

Objective. There are several desiderata when assessing the risk of violating content. For instance,
we wish to prioritize content that has a high likelihood of violation, but we also wish to prioritize
content with more severe violations (e.g., terrorism or child nudity). Additionally, we wish to
prioritize content that is likely to receive a large number of views. We use the Integrity Value (IV),
which quantifies the value of taking down a piece of violating content, as our key metric of interest.
At a high level, IV of a piece of content has the form

IV = (predicted future views + constant)× (severity).

The additive constant is tuned to sufficiently prioritize nonviral but violating content with high
severity. Future views are predicted dynamically using past viewership trajectories of similar content
by similar users. We fit a Hawkes process, which is effective at capturing “self-exciting” phenomena
such as viral content on social media [Haimovich et al., 2022]. Severity is a real-valued function
that maps every possible policy violation type to a non-negative real number. The system level IV is
defined as the sum of the IV of all the content sent for human review.

Once a piece of content is flagged for human review (i.e. at = 1), a human reviewer determines its
severity yt. We define yt = 0 for non-violating content. If yt > 0, then we remove the underlying
content and reward the underlying risk model (see Section 3).

Practical challenges. We briefly describe several practical challenges our algorithm must deal
with; see Section 4 for details. First, we must handle content lifetime—rather than make an immediate
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decision, we can defer the decision to a future time step (e.g., when more reviewers are available);
however, there is a cost of leaving violating content up for a longer period of time. Second, since
the algorithm must run in real-time on a huge volume of content, it cannot involve overly complex
computations. Third, we must handle nonstationarity—violating content changes form over time,
meaning older data may not be representative of the current content.

3 Bandit Algorithm

Risk prediction model. We describe our algorithm for deciding whether to flag each ct for review.
Naïvely, we could flag ct if any of its risk scores xt,i are positive—i.e., construct an overall risk
score ŷt = maxi xt,i and take at = 1(ŷt > 0) (our implementation uses the predicted risk scores
to prioritize content rather than making isolated decisions; see Section 4). However, different risk
scores may not be directly comparable. To address this problem, our algorithm rescales the different
risk scores according to some parametric function fβ , which we refer to as calibrating the set of risk
models:

ŷt = max
i
fβi

(xt,i),

where βi ∈ Rk are rescaling parameters for risk model i. We choose fβ to be piecewise linear:

fβi
(z) =

k∑
j=1

1(z ∈ Bj)βi,jz (1)

for each i, where Bj ⊆ R are bins over the space of risk scores. For simplicity, we have assumed that
the bins are identical across different risk scores i, but in our implementation, they actually depend
on i; roughly speaking, they are chosen based on quantiles of the observed scores {xt,i}t. Our goal
is to learn the unknown calibration parameters {βi} to make effective labeling decisions.

Parameter estimation. Next, we describe how to estimate βi given a fixed dataset {(xt, yt)}t. In
this setting, we can estimate βi,j for each risk score i and bin Bj independently, since it is a linear
model:

yt = βi,jxt,j + εt,i,j , (2)
for some σ-subgaussian noise term εt,i,j . Thus, we can estimate βi,j using linear regression:

β̂i,j =
(∑

t

x2t,j

)−1(∑
t

xt,jyt

)
. (3)

In addition, our implementation uses a heuristic where for the parameters βi for risk score i, we only
train on a top α quantile of examples {xt,i}t in terms of magnitude, where α is a hyperparameter.
Importantly, this strategy only depends on the relative magnitude of risk scores given by scoring
function i, so it is not affected by the fact that different risk scores xt,i and xt,i′ are incomparable.

Upper confidence bounds. A key challenge is bandit feedback: we only observe the true severity
yt for content ct when at = 1. Thus, we must actively explore different types of content to obtain
labels to estimate βi. Intuitively, we mark content for review either when its label can provide
information towards better estimating some βi (exploration), or when it is likley to be violating
(exploitation). In particular, we use UCB [Auer and Ortner, 2010], which chooses arms based on
an optimistic estimate of its rewards. It maintains both a point estimate β̂i,j of βi,j , and an upper
confidence bound for this estimate:

P[β̂i,j + ui,j ≥ βi,j ] ≥ 1− δ, (4)

where βi,j are the “true” parameters, δ ∈ (0, 1) is a confidence level, and the probability is taken
with respect to the randomness in the examples used to train β̂i,j . For our model, we can take

uij = σi,j ·

√
log(1/δ)∑

t x
2
t,i1(xt,i ∈ Bj)

. (5)

The denominator is an estimate of the covariance restricted to samples in bin Bj , and the numerator
scales the bound to provide a high-probability guarantee. Finally, σi,j captures the noise variance;
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Algorithm 1 Basic Bandit Algorithm

Initialize parameters β̂i, uncertainties ui
for t ∈ N do

Observe content risk scores xt = φ(ct)
Choose action at = 1(ŷt > 0), where ŷt = maxi fβ̂i+ui

(xt,i)

if at = 1 then
Mark ct for review, and observe true severity yt
Update parameters β̂i using (3), uncertainties ui using (5)

end if
end for

in practice, it is unknown, so we estimate it as the empirical standard error of our linear regression
estimate. Also, as we rely on a fixed window of training data, we use a fixed choice of δ (whereas
standard bandit algorithms reduce δ over time). Finally, for content with features xi, we optimistically
estimate its severity to be

ŷt = max
i
fβ̂i+ui

(xt,i). (6)

Our full algorithm is summarized in Algorithm 1.

4 Implementation Challenges

Content lifetime. A key challenge is that content actually persists on the platform for an extended
period of time. Thus, we can revisit negative decisions at = 0 at future steps—e.g., reviewers may
become less busy, making it worthwhile to review the content; alternatively, the IV of the content may
increase since it scales with viewership, which is time-varying. Rather than make a binary decision,
our algorithm instead maintains a pool Ct of all currently available content on time step t. In this
formulation, time steps correspond to events where a reviewer becomes available (rather than where a
new content arrives on the platform)—e.g., multiple pieces of content may be added and/or removed
from Ct−1 to obtain Ct. Also, note that the action space is now the content c∗t to review on step t
rather than whether to review content ct. Naïvely, we could review content with highest predicted
severity/IV:

c∗t = max
c∈Ct

{max
i
fβ̂i+ui

(φ(c))},

where the term inside the brackets is the predicted severity of c. However, a key insight from the
literature on job scheduling is that the optimal policy allocates jobs with the highest rate of change
first, known as the cµ rule [Mandelbaum and Stolyar, 2004]. Adapting this rule to our setting, we
prioritize content based on its estimated rate of change in IV.

Real-time parameter updates. Meta evaluates a very large volume of content for potential viola-
tions every minute. To ensure that we can dynamically adapt to new violation trends, we update our
parameter estimates once every 5 minutes. For scalability, we use online updates to our parameter
estimates rather than re-computing them from scratch. Specifically, let XY tij =

∑
t ytxti1(xti ∈ Bj)

and XXt
ij =

∑
t x

2
ti1(xti ∈ Bj) be the running numerators and denominators computed until time t

in (2). We can compute the terms XY tij and XXt
ij online as follows:

XY t+1
ij = XY tij + xt+1,iyt+1, XXt+1

ij = XXt
ij + x2t+1,i. (7)

Therefore, βt+1
ij can be computed online as the ratio of XY t+1

ij and XXt+1
ij . Next, let N t

ij =∑
τ<t 1(xτ,i ∈ Bj) be the number of labeled content pieces until time t by ranker i that belonged to

bin j. Then, we can compute the standard errors online as follows:

(σt+1
ij )2 =

N t
ij

N t+1
ij

(
(σtij)

2 + y2t+1 + (βtij)
2XXt

ij − (βt+1
ij )2XXt+1

ij

)
This strategy reduces the number of queries to our database from tens of thousands to a single look-up.
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Nonstationarity. An important challenge is that violation trends are highly non-stationary, since
users may learn to evade detection, and since Meta regularly updates its community standards. Thus,
we exponentially downweight older, less representative content: given a discount factor γ, we weight
training examples by γτ , where τ is the number of hours since the content arrived. We compute the
reweighted variants of XXt

ij and XY tij as follows:

XY tij =
∑
τ

γt−τxτ,iyτ , XXt
ij =

∑
τ

γt−τx2τ, i.

Similarly, we compute σtij and uij as follows:

σtij =

√∑
τ γ

2t−τ (yτ − β̂tijxτ,i)2∑
τ γ

t−τ1(xτ,i ∈ Bj)
, utij = σtij ·

√
log(1/δ)

XXt
ij

.

Finally, we altogether remove content beyond a window τ ≥ τmax.

Adding new features. Another way to address nonstationarity is to add new features (i.e., risk
models). One example is the recent use of emojis in a wave of racist comments directed at black
football players immediately after the UEFA European Football Championship final [Criddle, 2021].
Here, the key indicator of violating content was the use of a particular set of derogatory emojis
(which were benign outside this context). Retraining existing risk models to identify such new trends
is often time-consuming, slowing down our response to fast-moving violation trends. Instead, we
quickly deployed a specialized risk model that flags any content including both these emojis and
football discussion, combining it with sentiment analysis to estimate the violation likelihood. We
have developed infrastructure to quickly launch such handcrafted rankers. In particular, our bandit
algorithm quickly learns the effectiveness of this new risk model via exploration. If a violation
trend is short-lived, it will also quickly learn that the new risk model’s utility has decreased, and
will downweight it accordingly. Subsequently, we have observed substantial improvements in the
turnaround time for flagging and removing new variants of violating content.

Interpretability. A key advantage of our approach is interpretability: it is easy to understand why
certain piece of content is flagged for review, since we can point to the risk model responsible for
high severity. This ability helps debug potential issues when there are unexpected increases in a
certain type of violating content.

5 Deployment

Our approach has been deployed at scale at Meta. One challenge was how to choose hyperparameters,
which can significantly affect performance [Bietti et al., 2018]. To do so, we developed a simulator
based on a rolling 30 days of historical data. We chose UCB (which outperformed Thompson
Sampling) based on the simulator, as well as δ (the confidence parameter) and γ (the discount factor).
Further, using simulations we established the significant IV gains that our approach would have as
compared to the existing approach in production for a large range of number of jobs processed (exact
scale of number of jobs has been anonymized) as shown in Figure 3.

Internal A/B tests were run between 9th August, 2021 and 20th August, 2021, spanning a large
number of jobs and reviewer hours. Further, the experiment was run across multiple language based
markets including Indonesian, Turkish, Portuguese, German, Thai, Korean, Mexican, Hindi, Japanese,
Romanian, Dari, Filipino, Urdu, Burmese, Pashto, Hebrew and region based markets including
Australia and North America. There were three markets we removed from the test midway due to
world events (Dari, Pashto and Urdu). Results in these markets were hence excluded. The A/B test
consisted of 1,184,526 jobs being reviewed based on the control algorithm and 963,908 jobs being
reviewed based on the bandit algorithm.

In these tests, the bandit approach was compared to the existing approach used in production before
ours, called Whole Post Integrity Embeddings (WPIE) [Schroepfer, 2019]. WPIE uses a single ranker
across different violation types based on a pretrained universal representation of content for integrity
problems; WPIE itself significantly improved IV compared to an initial strategy that used fixed
allocations for different risk models [Rosen, 2019].
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Figure 3: Relative performance of the Centralized Bandit approach

These tests have demonstrated a statistically significant 13% (0.9%, 25.2%) lift in IV (with a fixed
capacity of human reviewers) compared to the WPIE (The values in the brackets indicate 95%
confidence intervals). To maintain the same IV as our bandit, WPIE would need approximately
780,000 additional people-hours per year of human reviewer capacity. Finally, an important advantage
of our approach is the ability to seamlessly handle new features that capture novel violation trends.

6 Conclusion

We have described our system deployed at Meta for identifying and removing violating content from
the platform. Our system employs a bandit algorithm to dynamically adjust calibration parameters
across a set of risk models. In an internal A/B test, our system outperformed the existing approach,
WPIE, by over 13% in terms of IV with a fixed capacity of human reviewers. As of December 2021,
our system flags over 2 million pieces of content for review per day by over 15,000 human reviewers
across the globe [Meta, 2022a]. Our work demonstrates that bandit algorithms are a promising strategy
for addressing issues in deploying machine learning systems in highly nonstationary environments.
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