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We study the problem of learning shared structure across a sequence of dynamic pricing experiments for

related products. We consider a practical formulation where the unknown demand parameters for each

product come from an unknown distribution (prior) that is shared across products. We then propose a meta

dynamic pricing algorithm that learns this prior online while solving a sequence of Thompson sampling

pricing experiments (each with horizon T ) for N different products. Our algorithm addresses two challenges:

(i) balancing the need to learn the prior (meta-exploration) with the need to leverage the estimated prior

to achieve good performance (meta-exploitation), and (ii) accounting for uncertainty in the estimated prior

by appropriately “widening” the estimated prior as a function of its estimation error. We introduce a novel

prior alignment technique to analyze the regret of Thompson sampling with a mis-specified prior, which

may be of independent interest. Unlike prior-independent approaches, our algorithm’s meta regret grows

sublinearly in N , demonstrating that the price of an unknown prior in Thompson sampling can be negligible

in experiment-rich environments (large N). Numerical experiments on synthetic and real auto loan data

demonstrate that our algorithm significantly speeds up learning compared to prior-independent algorithms.
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1. Introduction

Experimentation is popular on online platforms to optimize a wide variety of elements such as

search engine design, homepage promotions, and product pricing. This has led firms to perform an

increasing number of experiments, and several platforms have emerged to provide the infrastruc-

ture for these firms to perform experiments at scale (see, e.g., Optimizely 2019). State-of-the-art

techniques in these settings employ bandit algorithms (e.g., Thompson sampling), which seek to

adaptively learn treatment effects while optimizing performance within each experiment (Thomp-

son 1933, Scott 2015). However, the large number of related experiments begs the question: can

we transfer knowledge across experiments?

We study this question for Thompson sampling algorithms in dynamic pricing applications that

involve a large number of related products. Dynamic pricing algorithms enable retailers to optimize

profits by sequentially experimenting with product prices, and learning the resulting customer
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demand (Kleinberg and Leighton 2003, Besbes and Zeevi 2009). Such algorithms have been shown

to be especially useful for products that exhibit relatively short life cycles (Ferreira et al. 2015),

stringent inventory constraints (Xu et al. 2019), strong competitive effects (Fisher et al. 2017),

or the ability to offer personalized coupons/pricing (Zhang et al. 2017, Ban and Keskin 2017). In

all these cases, the demand of a product is estimated as a function of the product’s price (chosen

by the decision-maker) and a combination of exogenous features as well as product-specific and

customer-specific features. Through carefully chosen price experimentation, the decision-maker can

learn the price-dependent demand function for a given product, and choose an optimal price to

maximize profits (Qiang and Bayati 2016, Cohen et al. 2016, Javanmard and Nazerzadeh 2019).

Dynamic pricing algorithms based on Thompson sampling have been shown to be particularly

successful in striking the right balance between exploring (learning the demand) and exploiting

(offering the estimated optimal price), and are widely considered to be state-of-the-art (Thompson

1933, Agrawal and Goyal 2013, Russo and Van Roy 2014, Ferreira et al. 2018).

The decision-maker typically runs a separate pricing experiment (i.e., dynamic pricing algorithm)

for each product (or for a set of simultaneously-offered products). However, this approach can waste

valuable samples re-discovering information that could have been learned from previously-offered

related products. For example, students may be more price-sensitive than general customers; as a

result, many firms such as restaurants, retailers and movie theaters offer student discounts. This

implies that the coefficient of student-specific price elasticity in the demand function is positive for

many products (although the specific value of the coefficient likely varies across products). Similarly,

winter clothing may have higher demand in the fall and lower demand at the end of winter. This

implies that the demand functions of winter clothing may have similar coefficients for the features

indicating time of year. In general, there may even be complex correlations between coefficients of

the demand functions of products that are shared. For example, the price-elasticities of products

are often negatively correlated with their demands, i.e., customers are willing to pay higher prices

when the demand for a product is high. When offering multiple products simultaneously, one must

additionally learn cross-product price elasticities in the demand function (to model substitution

effects), which may also exhibit patterns that can be learned from substitution patterns of related

products in historical data. For example, substitution effects may be stronger between more similar

products, or among more price-sensitive customers like students.

Thus, one may expect that the demand functions for related products may share some (a priori

unknown) common structure, which can be learned across products. Note that the demand func-

tions are unlikely to be exactly the same, so a decision-maker would still need to conduct separate

pricing experiments for each product. However, accounting for shared structure during these exper-

iments may significantly speed up learning per product (or per set of products, if offering multiple

products simultaneously), thereby improving profits.
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In this paper, we propose an approach to learn shared structure across pricing experiments. We

begin by noting that the key (and only) design decision in Thompson sampling methods is the

Bayesian prior over the unknown parameters. This prior captures shared structure of the kind we

described above — e.g., the mean of the prior on the student-specific price-elasticity coefficient

may be positive with a small standard deviation. It is well known that choosing a good (bad) prior

significantly improves (hurts) the empirical performance of the algorithm (Chapelle and Li 2011,

Honda and Takemura 2014, Liu and Li 2015, Russo et al. 2018). However, the prior is typically

unknown in practice, particularly when the decision-maker faces a cold start. While the decision-

maker can use a prior-independent algorithm (Agrawal and Goyal 2013), such an approach achieves

poor empirical performance due to over-exploration; we demonstrate a substantial gap between the

prior-independent and prior-dependent approaches in our experiments on synthetic and real data.

In particular, knowledge of the correct prior enables Thompson sampling to appropriately balance

exploration and exploitation (Russo and Van Roy 2014). Thus, the decision-maker needs to learn

the true prior (i.e., shared structure) across products to achieve good performance. We propose a

meta dynamic pricing algorithm that efficiently achieves this goal.

We first formulate the problem of learning the true prior online while solving a sequence of

pricing experiments for different products. Our meta dynamic pricing algorithm requires two key

ingredients. First, for each product, we must balance the need to learn about the prior (“meta-

exploration”) with the need to leverage the prior to achieve strong performance for the current

product (“meta-exploitation”). In other words, our algorithm balances an additional exploration-

exploitation tradeoff across price experiments. Second, a key technical challenge is that finite-

sample estimation errors of the prior may significantly impact the performance of Thompson sam-

pling for any given product. In particular, vanilla Thompson sampling may fail to converge with

an incorrect prior; as a result, directly using the estimated prior across products can result in poor

performance. To this end, we introduce a novel “prior alignment” technique to analyze the regret

of Thompson sampling with a mis-specified prior, which may be of independent interest.

Using our alignment technique, we show surprisingly that despite prior mis-specification, greedy

updating of the prior is sufficient to learn effectively across pricing experiments when the prior

covariance is known. However, when the prior has an unknown covariance matrix, it is beneficial

to widen the estimated prior covariance by a term that is a function of the prior’s estimated finite-

sample error. Thus, we use a more conservative approach (a wide prior) for earlier products when

the prior is uncertain; over time, we gain a better estimate of the prior, and can leverage this

knowledge for better empirical performance. Our algorithm provides an exact prior correction path

over time to achieve strong performance guarantees across all pricing problems. We prove that,

when using our algorithm, the price of an unknown prior for Thompson sampling is negligible in

experiment-rich environments (i.e., as the number of products grows large).
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1.1. Related Literature

Experimentation is widely used to optimize decisions in a data-driven manner. This has led to a

rich literature on bandits and A/B testing (Lai and Robbins 1985, Auer 2002, Dani et al. 2008,

Rusmevichientong and Tsitsiklis 2010, Besbes et al. 2014, Johari et al. 2015, Bhat et al. 2019).

This literature primarily proposes learning algorithms for a single experiment, while our focus is

on meta-learning across experiments. Meta-learning can take the form of constructing an empirical

Bayesian prior (Raina et al. 2006, Anderer et al. 2019), data pooling (Gupta and Kallus 2020),

or leveraging low-dimensional structure between problems (Bastani 2020). We take an empirical

Bayesian approach to sequential decision-making. While there has been some prior work on meta-

learning in bandits (Hartland et al. 2006, Maes et al. 2012, Wang et al. 2018, Sharaf and Daumé III

2019) and more generally in reinforcement learning (Finn et al. 2017, 2018, Yoon et al. 2018),

these papers only provide heuristics for learning exploration strategies given a fixed set of past

problem instances. They do not prove any theoretical guarantees on the performance or regret of

the meta-learning algorithm. To the best of our knowledge, our paper is the first to propose a

meta-learning algorithm in a bandit setting with provable regret guarantees.

We study the specific case of dynamic pricing, which aims to learn an unknown demand curve

in order to optimize profits. We focus on dynamic pricing because meta-learning is particularly

important in this application, e.g., online retailers such as Rue La La may run numerous pricing

experiments for related fashion products. We believe that a similar approach could be applied to

multi-armed or contextual bandit problems, in order to inform the prior for Thompson sampling

across a sequence of related bandit problems.

Dynamic pricing has been found to be especially useful in settings with short life cycles or lim-

ited inventory (e.g., fast fashion or concert tickets, see Ferreira et al. 2015, Xu et al. 2019), among

online retailers that constantly monitor competitor prices and adjust their own prices in response

(Fisher et al. 2017), or when prices can be personalized based on customer-specific price elasticities

(e.g., through personalized coupons, see Zhang et al. 2017). Several papers have designed near-

optimal dynamic pricing algorithms for pricing a product by balancing the resulting exploration-

exploitation tradeoff (Kleinberg and Leighton 2003, Besbes and Zeevi 2009, Araman and Caldentey

2009, Farias and Van Roy 2010, Harrison et al. 2012, Broder and Rusmevichientong 2012, den

Boer and Zwart 2013, Keskin and Zeevi 2014). Recently, this literature has shifted focus to pricing

policies that dynamically optimize the offered price with respect to exogenous features (Qiang and

Bayati 2016, Cohen et al. 2016, Javanmard and Nazerzadeh 2019) as well as customer-specific fea-

tures (Ban and Keskin 2017, Elmachtoub et al. 2020). We adopt the linear demand model proposed

by Ban and Keskin (2017), which allows for feature-dependent heterogeneous price elasticities.
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When sellers offer multiple products simultaneously, one may wish to perform price experiments

jointly on a set of products to capture substitution effects or overlapping inventory constraints

(Keskin and Zeevi 2014, Agrawal and Devanur 2014, Ferreira et al. 2018). However, in these papers,

price experimentation is still performed independently on the current set of products, and any

learned parameter knowledge is not shared across future sets of products to inform future demand

learning. In contrast, we propose a meta dynamic pricing algorithm that learns the distribution

of unknown parameters of the demand function across products. While we focus largely on the

single-product setting for ease of exposition, we show how our algorithm and theoretical results

carry over straightforwardly for multi-product settings with substitution effects; in fact, transfer

learning from historical data may be even more valuable in these settings since the number of

parameters (e.g., cross-product elasticities) to learn is much larger.

Our learning strategy is based on Thompson sampling, which is widely considered to be state-of-

the-art for balancing the exploration-exploitation tradeoff (Thompson 1933). Several papers have

studied the sensitivity of Thompson sampling to prior misspecification. For example, Honda and

Takemura (2014) show that Thompson sampling still achieves the optimal theoretical guarantee

with an incorrect but uninformative prior, but can fail to converge if the prior is not sufficiently

conservative. Liu and Li (2015) provide further support for this finding by showing that the per-

formance of Thompson sampling for any given problem instance depends on the probability mass

(under the provided prior) placed on the underlying parameter; thus, one may expect that Thomp-

son sampling with a more conservative prior (i.e., one that places nontrivial probability mass on a

wider range of parameters) is more likely to converge when the true prior is unknown. It is worth

noting that Agrawal and Goyal (2013) and Bubeck and Liu (2013) propose a prior-independent

form of Thompson sampling, which is guaranteed to converge to the optimal policy even when the

prior is unknown by conservatively increasing the variance of the posterior over time. However, the

use of a more conservative prior creates a significant cost in empirical performance (Chapelle and Li

2011). For instance, Bastani et al. (2020) empirically find through simulations that the conservative

prior-independent Thompson sampling is significantly outperformed by vanilla Thompson sampling

even when the prior is misspecified.1 We empirically find, through experiments on synthetic and

real datasets, that learning and leveraging the prior can yield much better performance compared

to a prior-independent approach. As such, the choice of prior remains an important design choice

in the implementation of Thompson sampling (Russo et al. 2018). We propose a meta-learning

algorithm that learns the prior across pricing experiments on related products to attain better

performance. We also empirically demonstrate that a naive approach of greedily using the updated

1 We provide some theoretical support for this finding, since we show that limited prior mis-specification does not
affect the rate of convergence (e.g., when the prior covariance is known but the mean is unknown).
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prior performs poorly when the prior covariance is unknown, since it may cause Thompson sam-

pling to fail to converge to the optimal policy for some products. Instead, our algorithm gracefully

tunes the width of the estimated prior as a function of the uncertainty in the estimate over time.

1.2. Main Contributions

We highlight our main contributions below:

1. Model: We formulate our problem as a sequence of N different dynamic pricing problems, each

with horizon T . Importantly, the unknown parameters of the demand function for each product

are drawn i.i.d. from a shared (unknown) multivariate Gaussian prior.

2. Algorithm: We propose two meta-learning pricing policies, Meta-DP and Meta-DP++. The for-

mer learns only the mean of the prior, while the latter learns both the mean and the covariance of

the prior across products. Both algorithms balance the need to learn the prior (meta-exploration)

with the need to leverage the current estimate of the prior to achieve good performance (meta-

exploitation). Meta-DP++ additionally accounts for uncertainty in the estimated prior by conserva-

tively widening the prior as a function of its estimation error.

3. Theory: Unlike standard approaches, our algorithm can leverage shared structure across prod-

ucts to achieve regret that scales sublinearly in the number of products N . We prove upper bounds

Õ(d2
√
NT +d3

√
T ) and Õ(min{d2NT 1

2 , d4N
1
2T

3
2 }) = Õ(d3(NT )

5
6 ) on the meta regret of Meta-DP

and Meta-DP++ respectively. In both cases, our meta-learning approach matches the performance of

prior-independent algorithms for small N , and outperforms them in experiment-rich experiments

(i.e., when N = Ω̃(d) and N = Ω̃(d4T 2) respectively). A key ingredient of our analysis is a “prior

alignment” proof technique that may be of general interest for analyzing the regret of mis-specified

Thompson Sampling instances.

4. Numerical Experiments: We demonstrate on both synthetic and real auto loan data that

our approach significantly speeds up learning compared to ignoring shared structure (i.e., using

prior-independent Thompson sampling).

2. Problem Formulation

For ease of exposition, we primarily focus on a seller offering a single product at a time. Our

approach and results generalize straightforwardly when multiple products are offered simultane-

ously, where a seller must also learn cross-product elasticities to capture substitution effects (see

extension in Appendix F).

Notation: Throughout the paper, all vectors are column vectors by default. We define [n] to be

the set {1,2, . . . , n} for any positive integer n. We use ‖x‖u to denote the `u norm of a vector

x ∈ Rd, but we often omit the subscript when we refer to the `2 norm. For a matrix X ∈ Rd×d

‖X‖op := maxv∈Rd:‖v‖=1 |v>Xv| is the operator norm of X. For a positive definite matrix A∈Rd×d
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and vectors x, y ∈Rd, let ‖x‖A denote the matrix norm
√
x>Ax and 〈x, y〉 denote the inner product

x>y. For two matrices A and B, we use A⊗B to denote their Kronecker product. We also denote

x∨y and x∧y as the maximum and minimum between (x, y)∈R, respectively. We use the standard

notation O(·),Ω(·) and Θ(·) to characterize the asymptotic growth rate of a function (Cormen

et al. 2009); when logarithmic factors are omitted, we use Õ(·), Ω̃(·) and Θ̃(·). Finally, let λmin(·)

and λmax(·) denote the minimum and maximum eigenvalues of a matrix respectively.

2.1. Model

We first describe the classical dynamic pricing formulation for a single product; we then formalize

our meta-learning formulation over a sequence of N products.

Classical Formulation: Consider a seller who offers a single product over a selling horizon of

T periods. The seller can dynamically adjust the offered price in each period. At the beginning

of each period t ∈ [T ], the seller observes a random feature vector (capturing exogenous and/or

customer-specific features) that is independently and identically distributed from an unknown

distribution. Upon observing the feature vector, the seller chooses a price for that period. The seller

then observes the resulting demand, which is a noisy function of both the observed feature vector

and the chosen price. The seller’s revenue in each period is given by the chosen price multiplied

by the corresponding realized demand. The goal in this setting is to develop a policy π that

maximizes the seller’s cumulative revenue by balancing exploration (learning the demand function)

with exploitation (offering the estimated revenue-maximizing price).

Meta-learning Formulation: We consider a seller who sequentially offers N related products,

each with a selling horizon of T periods. For simplicity, a new product is not introduced until the

life cycle of the previous product ends.2 We call each product’s life cycle an epoch, i.e., there are

N epochs that last T periods each. Each product (and corresponding epoch) is associated with a

different (unknown) demand function, and constitutes a different instance of the classical dynamic

pricing problem described above. We now formalize the problem.

In epoch i ∈ [N ] at time t ∈ [T ], the seller observes a random feature vector xi,t ∈ Rd, which is

independently and identically distributed from a known distribution Pi. She then chooses a price

pi,t for that period. Based on practical constraints, we will assume that the allowable price range

is bounded across periods and products, i.e., pi,t ∈ [pmin, pmax] and 0< pmin < pmax <∞. The seller

then observes the resulting induced demand

Di,t(pi,t, xi,t) = 〈αi, xi,t〉+ pi,t〈βi, xi,t〉+ εi,t ,

2 We model epochs as fully sequential for simplicity; if epochs overlap, we would need to additionally model a customer
arrival process for each epoch. Our algorithms straightforwardly generalize for overlapping epochs; see remark in §4.4.
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where αi ∈ Rd and βi ∈ Rd are unknown fixed constants throughout epoch i, and εi,t ∼ N (0, σ2)

is i.i.d. Gaussian noise with variance σ2. This demand model was recently proposed by Ban and

Keskin (2017), and captures several salient aspects. In particular, the observed feature vector xi,t in

period t determines both the baseline demand (through the parameter αi) and the price-elasticity

of the demand (through the parameter βi) of product i.

Example 1 (Rue La La). Rue La La sells a limited set of new products in multi-day “events”

(Ferreira et al. 2015). In this case, T is the number of price changes during the event (events are

typically 1-4 days, and prices are updated no more than a few times a day), N is the number of

events offered so far by the seller (note that N � T ), and K is the number of simultaneously-offered

products in an event. For ease of exposition, we primarily consider K = 1, but Appendix F provides

a straightforward extension to general values of K, accounting for substitution effects.

Remark 1 (Alternative Demand Models). Our demand model utilizes a continuous out-

come variable, motivated by the setting where many customers simultaneously view the same

product with the same price in a given time unit. One can alternatively modify the demand model

to follow a generalized linear model (e.g., logistic) to consider a binary purchase outcome vari-

able for each customer. Our proposed algorithms easily generalize by appropriately modifying our

Bayesian posterior update rules; however, we restrict our regret analysis to the linear case since

OLS Bayesian posterior updates have a closed form, yielding a tractable analysis.

Shared Structure: For ease of notation, we denote θi =
(
α>i β>i

)> ∈ R2d; following the classical

formulation of dynamic pricing, θi is the unknown parameter vector that must be learned within a

given epoch in order for the seller to maximize her revenues over T periods. When there is no shared

structure between the {θi}Ni=1, our problem reduces to N independent dynamic pricing problems.

However, we may expect that related products share a similar potential market, and thus may

have some shared structure that can be learned from previously offered products. We model this

relationship by positing that the product demand parameter vectors {θi}Ni=1 are independent and

identically distributed draws from a common unknown distribution, i.e., θi ∼N (θ∗,Σ∗) for each

i∈ [N ].3 As discussed earlier, knowledge of the distribution over the unknown demand parameters

can inform the prior for Thompson sampling, thereby avoiding the need to use a conservative prior

that can result in poor empirical performance (Honda and Takemura 2014, Liu and Li 2015). The

mean of the shared distribution θ∗ is unknown; we will consider settings where the covariance of this

distribution Σ∗ is known and unknown. We propose using meta-learning to learn this distribution

from past epochs to inform and improve the current product’s pricing strategy.

3 Following the literature on Thompson sampling, we consider a multivariate Gaussian distribution since the posterior
has a simple closed form, thereby admitting a tractable theoretical analysis. When implementing such an algorithm
in practice, more complex distributions can be considered (e.g., see discussion in Russo et al. 2018).
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Remark 2 (Product Features). A complementary form of shared structure can be captured

through product features. However, even after conditioning on observed product features, the

demand functions for two products may behave very differently, e.g., two black dresses may cater

to very different types of customers or have very different price elasticities due to attributes like

fit or design that may be hard to capture as features. To capture product-specific (i.e., SKU-level)

demand behaviors, we allow the coefficients of the demand function (e.g., price-elasticity) to differ.

2.2. Assumptions

We now describe some mild assumptions on the parameters of the problem for our regret analysis.

Assumption 1 (Boundedness). The support of the features are bounded, i.e.,

∀i∈ [N ] ,∀t∈ [T ] ‖xi,t‖ ≤ xmax.

Furthermore, there exists a positive constant S such that ‖θ∗‖ ≤ S.

Our first assumption is that the observed feature vectors {xi,t} as well as the mean of the product

demand parameters θ∗ are bounded. This is a standard assumption made in the bandit and dynamic

pricing literature, ensuring that the expected regret at any time step is bounded. This is likely

satisfied since features and outcomes are typically bounded in practice.

Assumption 2 (Positive-Definite Feature Covariance). The minimum eigenvalue of the

feature covariance matrix Exi,t∼Pi
[
xi,tx

>
i,t

]
in every epoch i∈ [N ] is lower bounded by some positive

constant λ0, i.e.,

min
i∈[N ]

λmin

(
Exi,t∼Pi

[
xi,tx

>
i,t

])
≥ λ0 .

Our second assumption imposes that the covariance matrix of the observed feature vectors

E
[
xi,tx

>
i,t

]
in every epoch is positive-definite. This is a standard assumption for the convergence of

OLS estimators; in particular, our demand model is linear, and therefore requires that no features

are perfectly collinear in order to identify each product’s true demand parameters.

Assumption 3 (Positive-Definite Prior Covariance). The maximum and minimum eigen-

values of Σ∗ are upper and lower bounded by positive constants λ and λ, respectively i.e.,

λmax (Σ∗)≤ λ, λmin (Σ∗)≥ λ .

Our final assumption imposes that the covariance matrix of the random product demand parameter

θ is also positive-definite and bounded. Again, this assumption ensures that each product’s true

demand parameter is identifiable using standard OLS estimators.
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2.3. Background on Thompson Sampling with Known Prior

In this subsection, we consider the setting where the true priorN (θ∗,Σ∗) over the unknown product

demand parameters is known. This setting will inform our definition of the meta oracle and meta

regret in the next subsection. When the prior is known, a natural candidate policy for minimizing

Bayes regret is the Thompson sampling algorithm (Thompson 1933). The Thompson sampling

algorithm adapted to our dynamic pricing setting for a single epoch i ∈ [N ] is formally given in

Algorithm 1 below. Since the prior is known, there is no additional shared structure to exploit

across products, so we can treat each epoch independently.

We denote TS(N (θ∗,Σ∗) , λe) , as the Thompson sampling algorithm with prior N (θ∗,Σ∗) and

a positive input parameter λe for initialization. In line with pricing algorithms in the literature

(see, e.g., Keskin and Zeevi 2014, Ban and Keskin 2017), to ensure that we can obtain a well-

defined OLS estimate of the underlying parameter at the end of an epoch, our algorithm initially

performs random price exploration (alternating between pmin and pmax) until the Fisher information

matrix Vi,t =
∑t

s=1

(
x>i,s pi,sx

>
i,s

)> (
x>i,s pi,sx

>
i,s

)
has minimum eigenvalue of at least λe. Let Ti be

the (random) length of this initialization period in epoch i,

Ti = arg min
t

λmin (Vi,t) ≥ λe . (1)

We show that Ti = Õ(1) with high probability (see Lemma 4 in Appendix A), and therefore this

initialization period forms a negligible portion of the epoch.

For each time step after initialization, t≥Ti+1, the algorithm (1) samples the unknown product

demand parameters θ̊i,t =
[
α̊i,t; β̊i,t

]
from the posterior N

(
θTS
i,t ,Σ

TS
i,t

)
, and (2) solves and offers the

resulting optimal price based on the demand function given by the sampled parameters

pTS
i,t = arg max

p∈[pmin,pmax]

p · 〈α̊i,t, xi,t〉+ p2 ·
〈
β̊i,t, xi,t

〉
. (2)

Upon observing the actual realized demand Di,t

(
pTS
i,t , xi,t

)
, the algorithm computes the posterior

N
(
θTS
i,t+1,Σ

TS
i,t+1

)
for round t+ 1. Specifically, using the update rule for Bayesian linear regression

(Bishop 2006) and letting mTS
i,t = (x>i,t, p

TS
i,t x

>
i,t)
>, the posterior at time t is

θTS
i,t =

(
Σ−1∗ +σ

t−1∑
s=1

mTS
i,s (mTS

i,s )>

)−1(
Σ−1∗ θ∗+σ

t−1∑
s=1

mTS
i,sDi,s

)
, ΣTS

i,t =

(
Σ−1∗ +σ

t−1∑
s=1

mTS
i,s (mTS

i,s )>

)−1
.

The same algorithm is applied independently to each epoch i∈ [N ].

As evidenced by the large literature on the practical success of Thompson sampling (Chapelle

and Li 2011, Russo and Van Roy 2014, Ferreira et al. 2018), Algorithm 1 is a very attractive choice

for implementation in practice.
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Algorithm 1 TS(N (θ∗,Σ∗) , λe) : Thompson Sampling Algorithm

1: Input: The prior mean vector θ∗ and covariance matrix Σ∗, the index i of epoch, the length
of each epoch T, the noise parameter σ, exploration parameter λe.

2: Initialization: t← 1,
(
θTS
i,t ,Σ

TS
i,t

)
← (θ∗,Σ∗).

3: while λmin

(∑t−1
s=1

(
x>i,s pi,sx

>)> (x>i,s pi,sx
>))<λe do

4: Observe feature vector xi,t, and offer price pTS
i,t ←

{
pmax if t is even,

pmin otherwise.

5: Observe demand Di,t

(
pTS
i,t , xi,t

)
, and compute the posterior N

(
θTS
i,t+1,Σ

TS
i,t+1

)
.

6: t← t+ 1
7: end while
8: while t≤ T do
9: Observe feature vector xi,t.

10: Sample parameter θ̊i,t←
[
α̊i,t; β̊i,t

]
∼N

(
θTS
i,t ,Σ

TS
i,t

)
.

11: pTS
i,t ← arg maxp∈[pmin,pmax]

p · 〈α̊i,t, xi,t〉+ p2 ·
〈
β̊i,t, xi,t

〉
.

12: Observe demand Di,t

(
pTS
i,t , xi

)
, and compute the posterior N

(
θTS
i,t+1,Σ

TS
i,t+1

)
.

13: t← t+ 1
14: end while

Algorithm 1 attains a strong performance guarantee under the classical formulation compared

to an oracle that knows all N product demand parameters {θi}Ni=1 in advance. In particular, the

oracle would offer the expected optimal price in each period t∈ [T ] in epoch i∈ [N ], i.e.,

p∗i,t = arg maxp∈[pmin,pmax]
p ·Eε[Di,t(p,xi,t)]

= arg maxp∈[pmin,pmax]
p〈αi, xi,t〉+ p2〈βi, xi,t〉 . (3)

The resulting Bayes regret (Russo and Van Roy 2014) of a policy π relative to the oracle is:

Bayes RegretN,T (π) =Eθ,x,ε

[
N∑
i=1

T∑
t=1

p∗i,tD(p∗i,t, xi,t)−
N∑
i=1

T∑
t=1

pπi,tD(pπi,t, xi,t)

]
, (4)

where the expectation is taken with respect to the unknown product demand parameters, the

observed random feature vectors, and the noise in the realized demand. The following theorem

bounds the Bayes regret of the Thompson sampling dynamic pricing algorithm:

Theorem 1. When the prior over the demand parameters is known, Algorithm 1 satisfies

Bayes RegretN,T (π) = Õ
(
d

3
2N
√
T
)
,

Theorem 1 follows from a similar argument used for the linear bandit setting presented in

Russo and Van Roy (2014), coupled with standard concentration bounds for multivariate normal

distributions. The proof is given in Appendix A for completeness. Note that the regret scales

linearly in N , since each epoch is an independent learning problem.
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Remark 3. Prior-independent Thompson sampling (Agrawal and Goyal 2013) achieves a Bayes

regret of Õ(d2N
√
T ), which is comparable to the performance of Algorithm 1. However, we doc-

ument a substantial gap in empirical performance between the two approaches in §5, motivating

our study of learning the prior.

2.4. Meta Oracle and Meta Regret

We cannot directly implement Algorithm 1 in our setting, since the prior over the product demand

parameters N (θ∗,Σ∗) is unknown. In this paper, we seek to learn the prior (shared structure) across

products in order to leverage the superior performance of Thompson sampling with a known prior.

Thus, a natural question to ask is:

What is the price of not knowing the prior in advance?

To answer this question, we first define our performance metric. Since our goal is to converge

to the policy given in Algorithm 1 (which knows the true prior), we define this policy as our meta

oracle.4 Comparing the revenue of our policy relative to the meta oracle leads naturally to the

definition of meta regret RN,T for a policy π, i.e.,

RN,T (π) =Eθ,x,ε

[
N∑
i=1

T∑
t=1

pTS
i,tD(pTS

i,t , xi,t)−
N∑
i=1

T∑
t=1

pπi,tD(pπi,t, xi,t)

]
,

where the expectation is taken with respect to the unknown product demand parameters, the

observed random feature vectors, and the noise in the realized demand.

Note that prior-independent Thompson sampling and UCB treat each epoch independently, and

would thus achieve meta regret that grows linearly in N . Our goal is to design a policy with meta

regret that grows sublinearly in N . Recall that Theorem 1 bounds the Bayes regret of Thompson

sampling with a known prior as Õ
(
N
√
T
)

. Thus, if our meta regret (i.e., the performance of our

meta-learning policy relative to Algorithm 1) grows sublinearly in N , then the price of not knowing

the prior N (θ∗,Σ∗) in advance is negligible in experiment-rich environments (large N) compared

to the cost of learning the demand parameter for each product (the Bayes regret of Algorithm 1).

The values of the prior mean θ∗ as well as the actual product demand parameter vectors {θi}Ni=1

are unknown; we consider two settings — known and unknown Σ∗ (covariance of the prior).

Remark 4 (Choice of meta oracle). To the best of our knowledge, the optimal prior to

use for Thompson sampling remains a difficult, open problem. Existing theory shows (in lim-

ited settings) that priors that fail to place sufficient mass on the true parameter fare poorly: the

closest setting to ours is the linear bandit construction in Proposition 3.1 of Hamidi and Bay-

ati (2020), which shows that prior-dependent Thompson sampling with a mis-specified prior can

4 We use the term meta oracle to distinguish from the oracle in the classical formulation.
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achieve regret that scales exponentially in d; Theorem 1 of Liu and Li (2015) and Theorem 2 of

Honda and Takemura (2014) also provide illustrative constructions with the same insight. In the

other extreme, many empirical evaluations suggest that overly conservative priors (such as prior-

independent approaches) also fare poorly relative to using the true prior (see, e.g., Section 6 of

Bastani et al. (2020), the discussions in Chapelle and Li (2011), or our numerical results in Section

5). As a result, we choose Thompson Sampling with the true prior as our meta oracle. However,

one can choose alternative meta oracles — e.g., one that “widens” the true prior to place more

weight on parameters that may induce higher regret — implementing such a meta oracle would

still likely require learning the true prior, which is our primary contribution.

Non-anticipating Policies: We restrict ourselves to the family of non-anticipating policies Π : π

= {πi,t} that form a sequence of random functions πi,t that depend only on price and demand

observations collected until time t in epoch i (including all times t ∈ [T ] from prior epochs), and

feature vector observations up to time t+ 1 in epoch i. In particular, let H0,0 = (x1,1), and Hi,t =

(p1,1, p1,2, · · · , pi,t,D1,1,D1,2, · · · ,Di,t, x1,1, x1,2, · · · , xi,t+1) denote the history of prices and corre-

sponding demand realizations from prior epochs and time periods, as well as the observed feature

vectors up to the next time period; let Fi,t denote the σ-field generated by Hi,t. Then, we impose

that πi,t+1 is Fi,t measurable.

3. Meta-DP Algorithm

We begin with the case where the prior’s covariance matrix Σ∗ is known, and describe the Meta

Dynamic Pricing (Meta-DP) algorithm for this setting. We will consider the case of unknown Σ∗ in

the next section.

3.1. Overview

The Meta-DP algorithm begins by using initial product epochs as an exploration phase to initialize

our estimate of the prior mean θ∗. These exploration epochs use the prior-independent Thomp-

son sampling algorithm to ensure no more than Õ(d2
√
T ) meta regret for each epoch. After this

initial exploration period, our algorithm sequentially updates the estimated prior and leverages

this estimate in each subsequent epoch. The key technical challenge is that the estimated prior

has finite-sample estimation error, resulting in a Thompson sampling instance with a mis-specified

prior. We introduce a prior alignment proof technique to show that, despite prior mis-specification,

our Meta-DP algorithm still achieves meta regret that grows sublinearly in N .

3.2. Algorithm

The Meta-DP algorithm is presented in Algorithm 2. We first define some additional notation, and

then describe the algorithm in detail.
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Additional Notation: Throughout the rest of the paper, we use mi,t =
(
x>i,t pi,tx

>
i,t

)>
to denote

the price and feature information and Vi,t =
∑t

τ=1mi,tm
>
i,t to denote the Fisher information matrix

of round t in epoch i for all i∈ [N ] and t∈ [T ].

Algorithm Description: The first N0 epochs are treated as exploration epochs, where we define

N0 = 4c22dT 2
e loge(4dN

2T ) loge(2NT ) = Õ(d) , (5)

where Te = max
{

6 loge/2(dNT )/c1,2λe/c0
}

= Õ(1) (Te is a high probability upper bound on all

Ti’s, see Lemma 4 in Appendix A), and the constant is given by

c2 =
32
√
x2
max(1 + p2max)(σ2λ−1e + 5λ)

λeλσ2
.

As described in the overview, the Meta-DP algorithm proceeds in two phases. In particular, we

distinguish the following two cases for each epoch i:

1. Epoch i≤N0 : the Meta-DP algorithm runs the prior-independent Thompson sampling algo-

rithm (Agrawal and Goyal 2013, Abeille and Lazaric 2017) TS(N (0,ΨI2d), λe), where

Ψ = pmaxσ
√

2d loge(T (1 +x2
maxp

2
max(1 + p2max)T )) +

√
20λd loge(2T ) .

This is simply Algorithm 1 with a conservative prior (variance is a function of the horizon T ).

2. Epoch i>N0 : the Meta-DP algorithm first computes the OLS estimate of the true parameter

for each previous epoch j < i. It then average these parameter estimates to form an estimator θ̂i

of the prior mean θ∗, i.e.,

θ̂i =

∑i−1
j=1 V

−1
j,T

(∑T

t=1Dj,t(pj,t, xj,t)mj,t

)
i− 1

. (6)

Then, the Meta-DP algorithm runs Thompson Sampling (Algorithm 1) with the estimated prior

N (θ̂i,Σ∗), i.e., TS(N (θ̂i,Σ∗), λe). Specifically, after some random initialization steps (these steps

are identical to our meta oracle), our Meta-DP algorithm (1) samples the unknown product demand

parameters θ̊i,t =
[
α̊i,t; β̊i,t

]
from its posterior N

(
θMD
i,t ,Σ

MD
i,t

)
, and (2) solves and offers the resulting

optimal price based on the demand function given by the sampled parameters

pi,t = arg max
p∈[pmin,pmax]

p · 〈α̊i,t, xi,t〉+ p2 ·
〈
β̊i,t, xi,t

〉
. (7)

Upon observing the actual realized demand Di,t (pi,t, xi,t), the algorithm computes the posterior

N
(
θMD
i,t+1,Σ

MD
i,t+1

)
for round t+ 1.

We now state our main result upper bounding the meta regret of our Meta-DP algorithm (Algo-

rithm 2). The proof is provided in Section 3.3 and Appendix C.
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Algorithm 2 Meta-Dynamic Pricing Algorithm

1: Input: The prior covariance matrix Σ∗, the total number of epochs N, the length of each epoch
T, the noise parameter σ, and the set of feasible prices [pmin, pmax].

2: Initialization: N0 as defined in Eq. (5).
3: for each epoch i= 1, . . . ,N do
4: if i≤N0 then
5: Run TS(N (0,Ψ) , λe) .
6: else
7: Update θ̂i according to Eq. (6), and run TS

(
N
(
θ̂i,Σ∗

)
, λe

)
.

8: end if
9: end for

Theorem 2. The meta regret of the proposed Meta-DP algorithm satisfies

RN,T (Meta-DP algorithm) =

{
Õ(d2N

√
T ) when N <N0

Õ(d2
√
NT ) otherwise

= Õ
(
d2
√
NT + d3

√
T
)
.

It is worthwhile to compare the bound in Theorem 2 to the Õ(d2N
√
T ) meta regret bound for

prior-independent Thompson Sampling (Lemma 11 in Appendix C). When N . Õ(d), our bound

matches that of prior-independent Thompson Sampling, since we simply treat all our epochs as

exploration epochs. In the largeN regime, our meta regret scales as Õ(d2
√
NT ). Thus, our approach

of learning the prior is particularly valuable in experiment-rich settings (N � d). Combining the

two regimes yields a bound that is sublinear in both N and T .

Theorem 2 is somewhat surprising in the context of a growing theoretical literature that suggests

that a mis-specified prior can result in very poor regret for prior-dependent Thompson Sampling

(see, e.g., Honda and Takemura 2014, Liu and Li 2015, Hamidi and Bayati 2020). Indeed, one

may expect that the mis-specification induced by using the prior N (θ̂i,Σ∗) instead of N (θ∗,Σ∗)

can be substantial, since the ratio between these two probability density functions is unbounded

when θ̂i 6= θ∗. Yet, using our prior alignment proof strategy (described in the next subsection), we

establish that Thompson Sampling is remarkably robust to mis-specification of the prior mean,

lending theoretical support to previous empirical observations (Bastani et al. 2020).

3.3. “Prior Alignment” Proof Strategy

Since we only have a logarithmic number (in N and T ) of exploration epochs, the meta regret

accrued from these epochs is Õ(d2N0

√
T ) (see Lemma 11 in Appendix C).

In each non-exploration epoch i >N0, the meta oracle starts with the true prior N (θ∗,Σ∗) while

our algorithm Meta-DP starts with the estimated prior N (θ̂i,Σ∗). The following lemma (whose

proof is in Appendix B) bounds the error of the estimated prior mean with high probability:

Lemma 1. For any fixed i≥ 2 and δ ∈ [0,2/e], with probability at least 1− δ− 2/(N 2T 2),∥∥∥θ̂i− θ∗∥∥∥≤ 8

√
2(σ2/λe + 5λ)d loge(4d/δ)

i
.
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Thus, the key challenge in proving Theorem 2 is bounding the difference in regret incurred by

using a Thompson Sampling algorithm with a boundedly mis-specified prior. We introduce a new

“prior alignment” proof technique to address this challenge. At a high level, we show that after

the Ti exploration time steps, the distributions of the meta oracle’s (random) posterior estimate

θTS
i,Ti+1 and Meta-DP’s (random) posterior estimate θMD

i,Ti+1 are close. More specifically, there is a

continuum of realizations of the stochastic noise (in the observed demands) such that Meta-DP

achieves the same posterior estimate θMD
i,Ti+1 = θTS

i,Ti+1 despite starting with a different prior; when

such a match occurs, the expected regret moving forward from time Ti + 1, · · · , T is the same for

both policies. Using this approach, the regret of our Meta-DP algorithm can be expressed as a

weighted distribution of the regret of the meta oracle (which we bounded in Theorem 1).

More specifically, the following lemma (whose proof is in Appendix C) establishes the difference

in Bayesian posteriors between the meta oracle and our Meta-DP algorithm. Note that only the

means of the posterior differ but the variance is the same.

Lemma 2. Conditioned on θi and xi,1, . . . , xi,Ti , the posteriors of the meta oracle and our algo-

rithm Meta-DP algorithm satisfy

θTS
i,Ti+1− θMD

i,Ti+1 =

(
Σ−1∗ +σ

Ti∑
t=1

mi,tm
>
i,t

)−1(
Σ−1∗

(
θ∗− θ̂i

)
+σ

Ti∑
t=1

mi,t

(
εTS
i,t − εMD

i,t

))
,

ΣTS
i,Ti+1 = ΣMD

i,Ti+1 .

Now, consider any non-exploration epoch i≥N0 + 1. If upon completion of all exploration steps

at time Ti + 1, we have that the posteriors of the meta oracle and our Meta-DP algorithm coincide

— i.e., (θMD
i,Ti+1,Σ

MD
i,Ti+1) = (θTS

i,Ti+1,Σ
TS
i,Ti+1) — then both policies would achieve the same expected

revenue over the time periods Ti + 1, · · · , T . By Lemma 2, we know that ΣTS
i,Ti+1 = ΣMD

i,Ti+1 always,

so all that remains is establishing when θTS
i,Ti+1 = θMD

i,Ti+1.

Since the two algorithms begin with different priors but encounter the same covariates {xi,t}Tt=1

and take the same decisions in t∈ {1, · · · ,Ti}, their posteriors can only align at time Ti+1 due to the

stochasticity in the observations εi,t. For convenience, denote the noise terms from t ∈ {1, · · · ,Ti}

of the meta oracle and the Meta-DP algorithm respectively as

χTS
i =

(
εTS
i,1 . . . ε

TS
i,Ti

)>
, (8)

χMD
i =

(
εMD
i,1 . . . εMD

i,Ti

)>
. (9)

Furthermore, let Mi =
(
mi,1 . . . mi,Ti

)
∈R2d×Ti . Lemma 2 indicates that if

χMD
i −χTS

i =
1

σ
(M>

i Mi)
−1M>

i Σ−1∗

(
θ∗− θ̂i

)
, (10)
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then the posteriors of both algorithms align with θTS
i,Ti+1 = θMD

i,Ti+1. Thus for every realization of the

meta oracle’s noise terms χTS
i and the prior mean estimation error θ∗− θ̂i, there exists a well-defined

and feasible choice of Meta-DP algorithm’s error χMD
i that allows the two posteriors to coincide.

Furthermore, by Lemma 1, ‖θ∗ − θ̂i‖ is bounded as a function of
√

1/i with high probability,

ensuring that the difference in noise terms χMD
i −χTS

i needed to achieve alignment is small for later

epochs (as i grows large). With this observation, we can perform a change of measure over our

noise terms and integrate over the resulting distributions, yielding the desired bound on the meta

regret. The proof is provided in Appendix C.

Remark 5. Our prior alignment approach may be of general interest for analyzing the regret

of mis-specified Thompson Sampling instances. Russo and Van Roy (2014) propose a related but

different approach in Section 3.1 of their paper. Specifically, they relate the regret of implementing

TS(N (θ̂i,Σ∗), λe) in an environment with true prior N (θ∗,Σ∗) to the regret of TS(N (θ̂i,Σ∗), λe)

in an environment with a different true prior N (θ̂i,Σ∗). In contrast, we wish to compare the regret

of implementing TS(N (θ̂i,Σ∗), λe) (Meta-DP, Algorithm 2) and TS(N (θ∗,Σ∗), λe) (meta oracle,

Algorithm 1) in the same environment with true prior N (θ∗,Σ∗). We cannot adopt their approach

since one must additionally quantify the difference in regret between TS algorithms learning in

environments with different true priors; while this regret difference clearly scales sublinearly in

T , we require a bound that limits to 0 as the difference in priors ‖θ̂i − θ∗‖→ 0 (as i→∞). This

requirement is because even a constant nonzero difference in regret between the meta oracle and

our Meta-DP algorithm would result in O(N) meta regret over N epochs. To our knowledge, it is

an open problem to derive such a bound. Our “prior alignment” sidesteps this issue by directly

relating TS(N (θ̂i,Σ∗), λe) and TS(N (θ∗,Σ∗), λe) in an environment with true prior N (θ∗,Σ∗).

4. Meta-DP++ Algorithm

In this section, we consider the setting where the prior covariance matrix Σ∗ is also unknown. We

propose the Meta-DP++ algorithm, which builds on top of the Meta-DP algorithm and additionally

estimates the unknown prior covariance Σ∗.

4.1. Overview

The Meta-DP++ algorithm also begins by using initial product epochs as an exploration phase

to initialize our estimate of the prior mean θ∗ and covariance Σ∗. After this initial exploration

period, our algorithm sequentially updates the estimated prior and leverages this estimate in each

subsequent epoch. Once again, the estimated prior has finite-sample estimation error, resulting

in a Thompson sampling instance with a mis-specified prior. The key challenge compared to the

previous section is that we can no longer exactly “align” our algorithm’s posterior with that of
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the meta oracle when Σ∗ is also estimated. We leverage importance sampling arguments from off-

policy evaluation to bound the additional meta regret accrued due to this mismatch. Importantly,

to ensure that our importance weights remain well-behaved, we widen the estimated covariance

via a correction term that scales as the finite-sample estimation error of estimating Σ̂∗.

4.2. Algorithm

The Meta-DP++ algorithm is presented in Algorithm 3. We first define some additional notation,

and then describe the algorithm in detail.

Additional Notation: As with the Meta-DP algorithm, at the beginning of each epoch i∈ [N ], we

update our estimate θ̂i of the prior mean θ∗ according to Eq. (6). To estimate Σ∗, we need unbiased

and independent estimates for the unknown true demand parameter realizations θi across epochs.5

We use the initialization steps t∈ [Ti] to produce an estimate θ̇i for θi, i.e.,

θ̇i = V −1i,Ti

( Ti∑
t=1

Di,t(pi,t, xi,t)mi,t

)
.

Algorithm Description: The first N1 epochs are treated as exploration epochs, where we employ

the prior-independent Thompson Sampling algorithm. We define

N1 = max
{
N0, 256c23d

3T 2
e log3

e(4dN
2T ), c24d

4T 2 log3
e(2N

2T )
}

= Õ(d4T 2) , (11)

and the constants are given by

c3 =
16
√
σ2λ−1e + 5λ

σλeλ
+

256(λλ2
e + 16σ2)

λ2
eλ

2

(
8pmaxxmax

√
(1 + p2max)

λe
+

S

σλe

)
, c4 =

104σ(λλ2
e + 16σ2)

λ2
eλ

2 .

Note that we now require Õ(min{N,d4T 2}) exploration epochs, whereas we only required Õ (d2)

exploration epochs for the Meta-DP algorithm.

As described in the overview, the Meta-DP++ algorithm proceeds in two phases:

1. Epoch i≤N1: the Meta-DP++ algorithm runs the prior-independent Thompson sampling

algorithm (Agrawal and Goyal 2013, Abeille and Lazaric 2017) TS(N (0,ΨI2d), λe), where

Ψ = pmaxσ
√

2d loge(T (1 +x2
maxp

2
max(1 + p2max)T )) +

√
20λd loge(2T ) .

This is simply Algorithm 1 with a conservative prior (variance is a function of the horizon T ).

5 When estimating the prior covariance, we cannot use an estimator of θi that uses all T observations from epoch i
(as we do when estimating the prior mean). This is because the use of the learned prior from past epochs renders
observations from later epochs non-independent. We avoid this issue by restricting our estimator of θi to observations
from the initialization periods in each epoch, t∈ [Ti].
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2. Epoch i>N1: the Meta-DP++ algorithm computes an estimator θ̂i of the prior mean θ∗ using

Eq. (6) (same as Meta-DP algorithm), and an estimator Σ̂i of the prior covariance Σ∗ as

Σ̂i =
1

i− 2

i−1∑
j=1

(
θ̇j −

∑i−1
k=1 θ̇k
i− 1

)(
θ̇j −

∑i−1
k=1 θ̇k
i− 1

)>
−
σ2
∑i−1

j=1E
[
V −1j,Tj

]
i− 1

. (12)

The second term σ2
∑i−1

j=1E
[
V −1j,Tj

]
/(i− 1) accounts for the estimation error in {θ̇j}i−1j=1.

As noted earlier, we then widen our estimator to account for finite-sample estimation error:

Σ̂w
i = Σ̂i +

128(λλ2
e + 16σ2d)

λ2
e

√
5d loge(2N

2T )

i
· I2d , (13)

where I2d is the (2d)-dimensional identity matrix.

Then, the Meta-DP++ algorithm runs Thompson Sampling (Algorithm 1) with the estimated

prior N (θ̂i, Σ̂
w
i ), i.e., TS(N (θ̂i, Σ̂

w
i ), λe). Specifically, after some random initialization steps (these

steps are identical to our meta oracle), our Meta-DP++ algorithm (1) samples the unknown product

demand parameters θ̊i,t =
[
α̊i,t; β̊i,t

]
from the posterior N

(
θMDP
i,t ,ΣMDP

i,t

)
, and (2) solves and offers

the resulting optimal price based on the demand function given by the sampled parameters

pi,t = arg max
p∈[pmin,pmax]

p · 〈α̊i,t, xi,t〉+ p2 ·
〈
β̊i,t, xi,t

〉
. (14)

Upon observing the actual realized demand Di,t (pi,t, xi,t), the algorithm computes the posterior

N
(
θMDP
i,t+1 ,Σ

MDP
i,t+1

)
for round t+ 1.

Algorithm 3 Meta-Dynamic Pricing++ Algorithm

1: Input: The total number of products N, the length of each epoch T, the noise parameter σ,
and the set of feasible prices [pmin, pmax].

2: for epoch i= 1, . . . ,N do
3: if i≤N1 then
4: Run TS(N (0,Ψ) , λe) .
5: else
6: Update θ̂i and Σ̂i according to Eqs. (6) and (12) respectively.
7: Compute widened prior mean estimate Σ̂w

i according to Eq. (13).

8: Run TS
(
N
(
θ̂i, Σ̂

w
i

)
, λe

)
.

9: end if
10: end for

We now state our main result upper bounding the meta regret of our Meta-DP++ algorithm (Algo-

rithm 3). The proof is provided in Section 4.3 and Appendix E.

Theorem 3. The meta regret of the proposed Meta-DP++ algorithm satisfies

RN,T (Meta-DP++ algorithm) = Õ
(

min
{
d2NT

1
2 , d4N

1
2T

3
2

})
= Õ

(
d3(NT )

5
6

)
.
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It is worthwhile to compare the bound in Theorem 3 to the Õ(d2N
√
T ) meta regret bound

for prior-independent Thompson Sampling (Lemma 11 in Appendix C). When N . Õ(d4T 2), our

bound matches that of prior-independent Thompson Sampling, since we simply treat all our epochs

as exploration epochs. In the large N regime, our meta regret scales as Õ(d4N
1
2T

3
2 ). Thus, our

approach of learning the prior is particularly valuable in settings with many short-horizon experi-

ments (N � T ). For instance, as discussed in Example 1, sellers like Rue La La host many events,

offering new items with short selling seasons. Combining the two regimes yields a bound that is

sublinear in both N and T .

4.3. Proof Strategy

The number of exploration epochs N1 is logarithmic number in N but quadratic in T . This moti-

vates the analysis of two cases: (i) when the number of epochs N <N1 = Õ(d4T 2), the meta regret

guarantees given by existing prior-independent approaches is already good; (ii) when we transition

to an experiment rich environment with N > N1, the meta regret accrued from these epochs is

small since their cardinality scales logarithmically in N (see argument in Appendix E). We now

focus on the latter case where N is large.

Once again, following the proof strategy employed for Meta-DP algorithm, we employ “prior

alignment” to match the means of the meta oracle’s (random) posterior estimate and Meta-DP++’s

(random) posterior estimates. However, since Σ∗ was known in the previous section, matching the

posterior means θMD
i,Ti+1 = θTS

i,Ti+1 implied equality of the entire distribution of the posterior (see

Lemma 2). This equivalence allowed us to exactly equate the expected regret (after alignment) for

the meta oracle and our Meta-DP algorithm.

However, when Σ∗ is unknown, matching the posterior means θMDP
i,Ti+1 = θTS

i,Ti+1 no longer implies

that the posterior distributions are equal. Furthermore, since the Bayesian update for the covariance

matrix does not depend on the noise terms (it depends only on the observed covariates and chosen

prices), we cannot use any alignment strategy based on χTS
i and χMDP

i to get exact equivalence of

the posterior distributions. Thus, the key added challenge in proving Theorem 3 is bounding the

difference in regret between our Meta-DP++ algorithm and the meta oracle after alignment of the

means of their posteriors at time t= Ti.

Specifically, in each non-exploration epoch i > N1, the meta oracle starts with the true prior

N (θ∗,Σ∗) while our algorithm Meta-DP++ starts with the (widened) estimated prior N (θ̂i, Σ̂
w
i ).

Lemma 1 from the previous section already provides a bound on ‖θ̂i−θ∗‖, and the following lemma

(whose proof is in Appendix D) bounds the error of the estimated covariance ‖Σ̂i−Σ∗‖ (and thus

the error of our widened covariance ‖Σ̂w
i −Σ∗‖) with high probability:
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Lemma 3. For any fixed i≥ 3 and δ ∈ [0,2/e], with probability at least 1− 2δ− 2/(N 2T 2),

∥∥∥Σ̂i−Σ∗

∥∥∥
op
≤ 128(λλ2

e + 16σ2d)

λ2
e

(√
5d loge(2/δ)

i
∨ 5d loge(2/δ)

i

)
.

At time t = Ti + 1, we use a change of measure to “align” our Meta-DP++ algorithm’s prior

N (θMDP
i,Ti+1,Σ

MDP
i,Ti+1) to N (θTS

i,Ti+1,Σ
MDP
i,Ti+1). Combining Lemma 3 and the fact that both policies offer

the same prices in the random exploration periods, we know that ΣTS
i,Ti+1 and ΣMDP

i,Ti+1 are close with

high probability for later epochs. However, it remains to bound the regret difference between the

meta oracle’s policy, which employs the prior N (θTS
i,Ti+1,Σ

TS
i,Ti+1), and our Meta-DP++ algorithm,

which employs the prior N (θTS
i,Ti+1,Σ

MDP
i,Ti+1). We leverage importance sampling arguments from off-

policy evaluation (Precup et al. 2000, Murphy et al. 2001) to bound this remaining term. Prior

widening is instrumental in this last step, ensuring that our importance weights do not diverge.

Remark 6. While our Meta-DP algorithm does not require prior widening, we widen our prior

for our Meta-DP++ algorithm as described above. This allows us to shave off some extra factors

of the dimension d in our analysis, by ensuring that the importance weights are well-behaved

post-alignment. This is consistent with recent work by Hamidi and Bayati (2020), who show

that Thompson sampling can in general incur a worst-case regret that scales exponentially in d,

unless it uses a widened posterior variance at each step. Furthermore, we observe (often signif-

icantly) improved empirical performance on both synthetic and real datasets by employing our

Meta-DP++ algorithm compared to its non-widened analog (see Section 5).

4.4. Additional Remarks

Hierarchical Model: An alternative heuristic to leverage shared structure is to use hierarchi-

cal Thompson Sampling, maintaining a posterior on the shared prior and updating it after each

epoch. In Appendix G.1, we compare the Meta-DP algorithm to a hierarchical approach; while the

hierarchical algorithm outperforms prior-independent Thompson Sampling by leveraging shared

structure, we find that it still significantly underperforms compared to the Meta-DP algorithm for

moderate to large values of N due to excessive exploration.

Knowledge of N,T : Our formulation assumes knowledge of N and T . However, this assumption

can easily be removed using the well-known “doubling trick”. In particular, we can initially fix

any values N0 and T0, and iteratively double the length of the respective horizons; we refer the

interested reader to Cesa-Bianchi and Lugosi (2006) for details. For the Meta-DP algorithm, we

would simply continue to update the estimated prior mean; for the Meta-DP++ algorithm, we would

need to also follow the prior widening schedule. It is easy to see that our regret bounds are preserved

up to logarithmic terms under such an approach.
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Overlapping Epochs: We model epochs as fully sequential for simplicity; if epochs overlap, we

would need to additionally model a customer arrival process for each epoch. Our algorithms

straightforwardly generalize to a setting where arrivals are randomly distributed across overlapping

epochs. In particular, both the Meta-DP algorithm and the Meta-DP++ algorithm can be modified

to only use samples from the initialization period t ∈ [Ti] in each epoch for estimating the prior

mean (note that our estimation of the prior covariance already only uses samples from initialization

periods) without affecting the meta regret bounds and analysis. Therefore, when epochs overlap,

we will update our estimate of the prior as soon as we see Õ(1) customer responses for any product.

5. Numerical Experiments

We now validate our theoretical results by empirically comparing the performance of our proposed

algorithms against prior-independent Thompson Sampling (Agrawal and Goyal 2013). As discussed

earlier, this approach ignores learning shared structure (the prior) across products, and achieves

Õ(d2N
√
T ) meta regret (see Lemma 11 in Appendix C). When the prior covariance is unknown,

we illustrate the benefits of prior widening by additionally comparing against a version of the

Meta-DP++ algorithm that greedily uses the estimated covariance matrix (i.e., Σi = Σ̂i).

In addition to meta regret, we present results on Bayes regret (relative to the classical oracle) to

illustrate that our transfer learning approach significantly increases performance under the standard

metric. We perform numerical experiments on both synthetic data as well as a real dataset on auto

loans provided by the Columbia University Center for Pricing and Revenue Management.

A number of additional numerical results are presented in Appendix G, including comparison to

a hierarchical Thompson Sampling heuristic (G.1), examining the estimation error of the prior as

a function of N (G.2), as well as results under a revenue metric (G.3).

5.1. Synthetic Data

We begin with the case where the prior covariance Σ∗ is known.

Parameters: We consider N = 700 products, each with a selling horizon of T = 300 periods. We

set the feature dimension d= 5, the prior mean θ∗ = [1.2×1d;−0.3×1d]
>, and the prior covariance

Σ∗ = 0.2× I2d. In each epoch i ∈ [N ] and each round t ∈ [T ], each entry of the observed feature

vector xi,t is drawn i.i.d. from the uniform distribution over [0,1/
√
d]d; note that this ensures the `2

norm of each feature vector is upper bounded by 1. For each product i∈ [N ], we randomly draw a

demand parameter θi i.i.d. from the true prior N (θ∗,Σ∗) . The allowable prices lie in (0,5]. Finally,

the noise distribution is the standard normal distribution, i.e., σ= 1.
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Figure 1 Cumulative meta regret and Bayes regret for Meta-DP and prior-independent Thompson Sampling.

Results: We plot the cumulative meta regret and Bayes regret of each algorithm, averaged over 20

random trials, as a function of the number of epochs N (recall that each epoch lasts for T periods).

The results are shown in Figure 1. Both algorithms are identical during the initial exploration

epochs.

As expected, the prior-independent approach achieves meta regret that scales linearly in N , since

each epoch is treated independently. In contrast, the left panel of Figure 1 shows that Meta-DP

achieves nearly zero meta regret after the exploration epochs as it has learned the prior.

The right panel of Figure 1 examines Bayes regret; note that even the meta-oracle achieves

O(N) Bayes regret (Theorem 1). However, the slope of Meta-DP closely matches that of the meta-

oracle after the initial exploration epochs, i.e., we do not accrue additional regret (relative to the

meta oracle) as N grows large. In contrast, the slope of prior-independent Thompson Sampling

is significantly larger, resulting in additional regret continually accruing as N grows large. In

particular, when N = 700, the Bayes regret of prior independent Thompson Sampling is 39% larger

than that of Meta-DP and 48% larger than that of the meta oracle. Thus, our approach of learning

shared structure is particularly valuable in experiment-rich environments.

Varying the feature dimension d: We now explore how our results vary as we change the dimen-

sion of the observed features. Our previous results considered d= 5. We now additionally consider:

1. No features, d= 1: We set xi,t = 1 for all i∈ [N ] and t∈ [T ].

2. Many features, d= 10: Each entry of the observed feature vector xi,t is again drawn i.i.d. from

the uniform distribution over [0,1/
√
d]d for all i∈ [N ] and t∈ [T ].

The results for both cases, averaged over 20 random trials, are shown in Figures 5(a) and 5(b)

respectively. Again, we see that Meta-DP substantially outperforms prior-independent Thompson
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(b) d= 10

Figure 2 Cumulative meta regret and Bayes regret for Meta-DP and prior-independent Thompson Sampling for

different values of the feature dimension d.

sampling algorithm in both meta regret and Bayes regret, regardless of the choice of feature dimen-

sion d. Note that we require more exploration epochs when d is larger (recall that N0 scales as

d).

Unknown prior covariance Σ∗: We now shift our attention to the Meta-DP++ algorithm, and

follow the same setup described earlier. To quantify the benefit of prior widening, we additionally

consider a version of the Meta-DP++ algorithm that greedily uses the estimated covariance matrix,

i.e., Σi = Σ̂i. The results, averaged over 20 random trials, are shown in Figure 3. We see that the

Meta-DP++ algorithm significantly outperforms both the prior-independent Thompson sampling

algorithm as well as the non-widened greedy benchmark in meta regret (left panel) and Bayes

regret (right panel). Interestingly, the greedy approach performs significantly worse in earlier epochs
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Figure 3 Cumulative meta regret and Bayes regret for Meta-DP++ and benchmark algorithms.

after the initial exploration epochs (when it relies on a prior that is likely to be significantly mis-

specified); in later epochs, the greedy approach’s slope begins to match that of Meta-DP++ as it

starts learning the true prior. Thus, prior widening appears critical to ensure good performance on

each pricing problem — particularly earlier ones, where we should be careful not to over-rely on a

prior is likely to be significantly mis-specified. The overall success of Meta-DP++ suggests that the

price of not knowing the prior in advance is negligible in experiment-rich environments (large N).

5.2. Real Data on Online Auto-Lending

We now turn to the on-line auto lending dataset. This dataset was first studied by Phillips et al.

(2015), and subsequently used to evaluate dynamic pricing algorithms by Ban and Keskin (2017).

We will follow a similar set of modeling assumptions.

The dataset records all auto loan applications received by a major online lender in the United

States from July 2002 through November 2004. It contains 208,085 loan applications. For each

application, we observe some loan-specific features (e.g., date of application, the term and amount

of loan requested, and the borrower’s personal information), the lender’s pricing decision (i.e., the

monthly payment required of the borrower), and the resulting demand (i.e., whether or not this

offer was accepted by the borrower). We refer the interested reader to Columbia University Center

for Pricing and Revenue Management (Columbia 2015) for a detailed description of the dataset.

Algorithms: We consider the setting where both the prior mean and prior covariance are

unknown. Thus, we compare the performance of Meta-DP++ algorithm against that of prior-

independent Thompson Sampling, the ILSX algorithm proposed in Ban and Keskin (2017), and

the greedy version of Meta-DP++ that does not employ prior widening.
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Products: We first define a set of related products. We segment loans by the borrower’s state

(there are 50 states), the term class of the loan (0-36, 37-48, 49-60, or over 60 months), and the car

type (new, used, or refinanced). The expected demand and loan decisions offered for each type of

loan is likely different based on these attributes. We consider loans that share all three attributes

as a single “product” offered by the online lender. We thus obtain a total of N = 589 unique

products. The number of applicants in the data for each loan type determines T for each product;

importantly, note that T is not identical across products.

Remark 7. We use three categorical features (state, term of loan, and car type) to define

N = 589 products. In contrast, the ILSX algorithm (Ban and Keskin 2017) sets N = 1 and encodes

this information as product features; this results in a feature vector of dimension Θ(d+N), since

each possible value of the categorical feature will be represented as 1-hot encoding. The resulting

meta regret of ILSX will therefore still grow superlinearly in N (unlike our proposed algorithms).

Moreover, their demand model is less expressive compared to ours since it does not allow for

different price elasticities by state/term/car type (see our earlier Remark 2 for discussion).

Remark 8. Following our model, we simulate each epoch sequentially. In reality, customers will

likely arrive randomly for each loan type at different points of time. We note that the Meta-DP algo-

rithm only uses the initial sample from each epoch for estimating the prior mean, and thus, in

principle, it can be adapted to a setting where arrivals are randomly distributed across overlapping

epochs as well (see discussion in §4.4).

Features: We use the feature selection results from Ban and Keskin (2017), which yields the

following features: FICO score, the loan amount approved, prime rate, and the competitor’s rate.
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(a) Cumulative meta regret and Bayes regret for Meta-DP++ and benchmark algorithms

Figure 4 Computational results on a real dataset on online auto loans.
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Setup: Following the approach of Phillips et al. (2015) and Ban and Keskin (2017), we impute

the price of a loan as the net present value of future payments (a function of the monthly payment,

customer rate, and term approved; we refer the reader to the cited references for details). The

allowable price range in our experiment is [0,30].

We note that, although we use a linear demand model, our responses are binary (i.e., whether

a customer accepts the loan). This approach is common in the literature (see, e.g., Li et al. 2010).

Besbes and Zeevi (2015) provide theoretical justification for this approach by showing that we may

still converge to the optimal price despite the demand model being misspecified.

Finally, unlike our model and analysis, the true distribution over loan demand parameters across

products may not be a multivariate Gaussian. We use the entire dataset to estimate each product’s

demand parameter, and then fit a multivariate Gaussian prior over the empirical distribution of

product demand parameters — our meta oracle uses this prior. However, our regret is evaluated

with respect to the true data (i.e., our meta oracle may perform poorly in Bayes regret if the prior

is far from a multivariate Gaussian). Thus, this experiment can provide a check on whether our

algorithms (which seek to mimic the meta oracle) are robust to model misspecification of the prior.

Results: We average our results over 100 random permutations of the data. The results are

shown in Figure 4. We first note that, despite potential misspecification of the prior’s model class,

the meta oracle (prior-dependent Thompson Sampling) achieves much better Bayes regret (right

panel) than all algorithms. This implies that the (potentially mis-specified) shared prior across

products is informative, and thus leveraging shared structure may be valuable. Then, by design,

our Meta-DP++ algorithm learns this shared structure, incurring meta regret that grows sublinearly

in N (left panel). Consistent with our results on synthetic data, we see that the Meta-DP++ algo-

rithm significantly outperforms the benchmark algorithms; this is true even though the multivariate

Gaussian prior that we estimate may not be the true prior. This result suggests that our proposed

algorithms may be robust to model misspecification of the prior.

6. Discussion & Conclusions

Firms are increasingly performing experimentation. This provides an opportunity for decision-

makers to learn not just within experiments, but also across experiments. In this paper, we consider

the multi-product dynamic pricing setting where a decision-maker must learn a sequence of related

unknown parameters through experimentation; we capture the relationship across these unknown

parameters by imposing that they arise from a shared distribution (the prior). We propose meta-

learning policies that efficiently learn both the shared distribution across experiments and the

individual unknown parameters within experiments.

Our meta-learning approach can easily be adapted beyond dynamic pricing applications to classi-

cal multi-armed and contextual bandit problems as well. For instance, consider clinical trials, which
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were the original motivation for bandit problems (Thompson 1933, Lai and Robbins 1985). Many

have argued the benefits of Bayesian clinical trials, which allow for the use of historical information

and for synthesizing results of past relevant trials, e.g., past clinical trials on the same disease

may indicate that patients with certain biomarkers or concomitant medications are less likely to

benefit from standard therapy. Such information can be encoded in a Bayesian prior to potentially

allow for more informative clinical trials and improved treatment allocations to patients within the

trial (see, e.g., Berry 2006, Anderer et al. 2019). Our meta-learning approach can inform how such

priors are constructed. Importantly, prior widening gracefully transitions from an uninformative

to an informative prior as we accrue data from more related clinical trials.

Our prior widening technique is inspired by the emerging literature studying prior misspecifi-

cation in Thompson sampling. In general, adopting a more conservative prior allows Thompson

sampling to still achieve the optimal theoretical guarantee, while a less conservative prior may

cause failure to converge (Honda and Takemura 2014, Liu and Li 2015). However, the use of a

conservative prior often results in poor empirical performance, and can erode the benefit of using

Thompson sampling over UCB and other prior-free approaches (see, e.g., Russo and Van Roy 2014,

Bastani et al. 2020). We take the view that a successful implementation of Thompson sampling

requires learning an appropriate prior, and propose meta-learning policies to achieve this goal

across a sequence of learning problems.
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Appendix

We begin by defining some helpful notation. First, let

REV
(
θ, θ̂,Σ, t

)
=E

[
t∑

s=1

pi,sDi,s(pi,s, xi,s)

]
,

be the expected total revenue over t time steps obtained by running TS(N (θ̂,Σ),0) — the Thompson sampling

algorithm in Algorithm 1 with the (possibly incorrect) prior N
(
θ̂,Σ

)
and exploration parameter λe = 0 —

in an epoch with true parameter θ. Second, let

REV∗ (θ, t) = E

[
t∑

s=1

p∗i,sDi,s(p
∗
i,s, xi,s)

]
,

be the expected total revenue over t time steps obtained by the oracle — recall p∗i,s is the oracle price defined

in Eq. (3) — in an epoch with true parameter θ.

All norms ‖ · ‖ refer to the `2 norm unless stated otherwise.

A. Meta oracle Regret Analysis

We first state the following lemma, whose proof is provided in Section A.1.

Lemma 4. For any epoch i∈ [N ], the length of the random exploration periods Ti is upper bounded by

Te = max
{

6 loge/2(dNT )/c1,2λe/c0
}

(15)

with probability at least 1− 2/(N3T 2). The constants are given by

c0 =
λ0

3

p2
max + p2

min + 2

2
−

√(
p2

max + p2
min + 2

2

)2

− (pmax− pmin)2

 , c1 =
c0

(1 + p2
max)x2

max

.

In other words, we incur at most logarithmic regret due to the initial random exploration in Algorithm 1.

Proof of Theorem 1 The proof proceeds in three steps. We first show that the regret incurred in the initial

random exploration steps is negligible. We then map the remaining regret to a linear bandit formulation,

and bound the resulting terms.

First, define the event

A= {Ti ≤Te ∀i∈ [N ]} . (16)

By Lemma 4, Pr(¬A) ≤ 2/(NT )2. We can decompose the regret from Algorithm 1 into exploration and

non-exploration periods, conditioned on whether or not A holds:

E
θi∼N(θ∗,Σ∗)

[
REV∗ (θi, T )−

Ti∑
t=1

pTS
i,t Di,t(p

TS
i,t , xi,t)− REV

(
θi, θ

TS
i,Ti ,Σ

TS
i,Ti , T −Ti

)]

=E

[
REV∗ (θi, T )−

Ti∑
t=1

pTS
i,t Di,t(p

TS
i,t , xi,t)− REV

(
θi, θ

TS
i,Ti ,Σ

TS
i,Ti , T −Ti

)∣∣∣∣∣¬A
]

Pr(¬A)

+E

[
REV∗ (θi,Ti)−

Ti∑
t=1

pTS
i,t Di,t(p

TS
i,t , xi,t)

∣∣∣∣∣A
]

+E
[(
REV∗ (θi, T −Ti)− REV

(
θi, θ

TS
i,Ti ,Σ

TS
i,Ti , T −Ti

))∣∣A]
≤E

[
2pmaxxmax

√
1 + p2

max‖θi‖
2N2T

]
+E

[
2pmaxxmax

√
1 + p2

maxTe‖θi‖
]
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+E
[(
REV∗ (θi, T −Ti)− REV

(
θi, θ

TS
i,Ti ,Σ

TS
i,Ti , T −Ti

))∣∣A] , (17)

where we have used the facts that Pr(¬A) ≤ 2/(NT )2, the worst-case regret achievable in a single time

period is 2pmaxxmax

√
1 + p2

max‖θi‖, and Ti ≤Te on the event A.

The first two terms in Eq. (17) are O(1/(N2T )) +O(log(dNT )) = Õ(1). To analyze the third term in Eq.

(17), we construct a mapping between the dynamic pricing and linear bandit problems, in order to leverage

existing results on TS and UCB for linear bandits (Russo and Van Roy 2014, Abbasi-Yadkori et al. 2011).

In particular, we can map the Bayes regret of an epoch

E
θi∼N(θ∗,Σ∗)

[(
REV∗ (θi, T −Ti)− REV

(
θi, θ

TS
i,Ti ,Σ

TS
i,Ti , T −Ti

))∣∣E] ,
to the Bayes regret of the Thompson sampling algorithm (Russo and Van Roy 2014) for a linear bandit

instance as follows. Let the unknown parameter θ =
(
α> β>

)>
be drawn from the prior N (θ∗,Σ∗). Take

the decision set to be At = {(pxi,t;p2xi,t) : p∈ [pmin, pmax]}, where xi,t is the feature vector drawn i.i.d from

the feature distribution. Note that the magnitude of the `2-norm of an action is at most pmax

√
1 + p2

maxxmax

and the noise terms are conditionally (pmaxσ)-subgaussian.

Using this mapping, by Theorem 3 of Abbasi-Yadkori et al. (2011) and Lemma 17 in Appendix H, the

Bayes regret of an epoch is upper bounded as

E
θi∼N(θ∗,Σ∗)

[(
REV∗ (θi, T −Ti)− REV

(
θi, θ

TS
i,Ti ,Σ

TS
i,Ti , T −Ti

))∣∣E]
=E

[
Õ
(
‖θ‖
√
dT
(
‖θ‖+

√
d
))]

= E
[
Õ
(
‖θ‖2
√
dT + ‖θ‖d

√
T
)]
. (18)

where Eq. (18) follows from the facts that (i) the upper bound on the regret of a linear bandit instance scales

linearly with the maximum absolute value of the rewards and, (ii) the absolute value of the expected reward

(revenue) for each round is upper bounded as

max
p∈[pmin,pmax]

|〈m,θ〉| ≤ max
p∈[pmin,pmax]

‖m‖‖θ‖ = pmax

√
1 + p2

maxxmax‖θ‖ = O (‖θ‖) . (19)

To complete the proof, we must bound E
θ∼N(θ∗,Σ∗)

[‖θ‖2]. By the “trace trick”, we have

E
θ∼N(θ∗,Σ∗)

[
‖θ‖2

]
= tr

(
E

θ∼N(θ∗,Σ∗)

[
θθ>

])
= tr

(
E

θ∼N(θ∗,Σ∗)

[
(θ− θ∗) (θ− θ∗)>+ θ∗θ

>+ θθ>∗ − θ∗θ>∗
])

= tr

(
Σ∗+ θ∗ E

θ∼N(θ∗,Σ∗)

[
θ>
]

+ E
θ∼N(θ∗,Σ∗)

[θ]θ>∗ − θ∗θ>∗
)

= tr
(
Σ∗+ 2θ∗θ

>
∗ − θ∗θ>∗

)
= tr (Σ∗) + tr

(
‖θ∗‖2

)
≤ dλ+S2 = O(d) , (20)

where we have used the definition of the covariance matrix Σ∗ = E
θ∼N(θ∗,Σ∗)

[
(θ− θ∗) (θ− θ∗)>+ θ∗θ

>
]
, and

the last step follows from Assumptions 1 and 3. Moreover, by Cauchy-Schwarz inequality, we have

E
θ∼N(θ∗,Σ∗)

[‖θ‖] ≤
√

E [‖θ‖2] ≤
√
dλ+S2 = O

(√
d
)
. (21)
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Substituting Eqs. (20) and (21) into Eq. (18), we obtain that the third term of Eq. (17) is Õ(d3/2T 1/2).

Noting that the first and second terms of Eq. (17) contribute Õ(1) regret, we can bound the total regret of

each epoch as Õ(d3/2T 1/2).

Since each epoch is mutually independent, the Bayes regret of Algorithm 1 over all N epochs is simply

N × Õ(d3/2T 1/2) = Õ(d3/2NT 1/2). �

A.1. Proof of Lemma 4

Recall that Vi,t =
∑t

s=1

(
x>i,s pi,sx

>
i,s

)> (
x>i,s pi,sx

>
i,s

)
is the Fisher information matrix of epoch i after time

step t. Lemma 4 states that λmin(Vi,Te) ≥ λe with high probability. Since Vi,t is a random matrix, we

will apply the following matrix Chernoff inequality to lower bound its minimum eigenvalue (Note that

λmax

((
x>i,s pi,sx

>
i,s

)> (
x>i,s pi,sx

>
i,s

))
≤ (1 + p2

max)x2
max).

Lemma 5 (Theorem 3.1 of Tropp 2011). For any ζ ∈ [0,1), any real number u, and any t≤Ti

Pr (λmin(Vi,t) ≥ (1− ζ)u and λmin (E [Vi,t]) ≥ u)) ≥ 1− d
(

exp(−ζ)

(1− ζ)1−ζ

)c1u/c0
.

The above lemma states that the probability that λmin(Vi,t) is much less than λmin (E [Vi,t]) is small. To

apply the above result, we must first lower bound the minimum eigenvalue of E [Vi,t]:

Lemma 6. For all t≤Ti, the minimum eigenvalue of E [Vi,t] is lower bounded as

λmin (E [Vi,t])≥ c0t.

Proof of Lemma 6 From linearity of expectation, we have

E [Vi,t] =
∑

τ even, τ≤t

E
[(

xi,τ
pi,txi,τ

)(
x>i,τ pi,τx

>
i,τ

)]
+

∑
τ odd, τ≤i

E
[(

xi,τ
pi,txi,τ

)(
x>i,τ pi,τx

>
i,τ

)]
≥ t

3

((
E[xi,1x

>
i,1] pminE[xi,1x

>
i,1]

pminE[xi,1x
>
i,1] p2

minE[xi,1x
>
i,1]

)
+

(
E[xi,1x

>
i,1] pmaxE[xi,1x

>
i,1]

pmaxE[xi,1x
>
i,1] p2

maxE[xi,1x
>
i,1]

))
=
t

3

(
2E[xi,1x

>
i,1] (pmin + pmax)E[xi,1x

>
i,1]

(pmin + pmax)E[xi,1x
>
i,1] (p2

min + p2
max)E[xi,1x

>
i,1]

)
=
t

3

(
2 (pmin + pmax)

(pmin + pmax) (p2
min + p2

max)

)
⊗E[xi,1x

>
i,1] .

We can compute the minimum eigenvalue of

(
2 (pmin + pmax)

(pmin + pmax) (p2
min + p2

max)

)
to be

p2
max + p2

min + 2

2
−

√(
p2

max + p2
min + 2

2

)2

− (pmax− pmin)2 .

Note that the eigenvalues of a symmetric positive semi-definite matrix coincide with its singular values. Thus,

we can apply Lemma 18 to obtain that the minimum eigenvalue of E [Vi,t] is at least

λmin (E [Vi,t])≥
t

3
·λmin

(
2 (pmin + pmax)

(pmin + pmax) (p2
min + p2

max)

)
·λmin

(
E[xi,1x

>
i,1]
)

≥ tλ0

3

p2
max + p2

min + 2

2
−

√(
p2

max + p2
min + 2

2

)2

− (pmax− pmin)2

 ,
where we have used Assumption 2. �
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Proof of Lemma 4 Taking ζ = 1/2 in Lemma 5 and substituting the result from Lemma 6, we have

Pr

(
λmin(Vi,t)≥

c0t

2

)
≥ 1− 2d

(e
2

)− c1t
2

.

Setting t= Te = max
{

6 loge/2(dNT )/c1,max 2λe/c0
}
, this implies

Pr (λmin(Vi,Te) ≥ λe) ≥ 1− 2

N3T 2
,

and we can conclude the proof. �

B. Convergence of Prior Mean Estimate

Lemma 1 shows that, after observing i epochs of length T , our estimate θ̂i of the unknown prior mean θ∗ is

close with high probability. To prove Lemma 1, we first focus on the case where the event A defined in Eq.

(16) holds. We will show that at the end of each epoch, our estimated parameter vector θ̇i is probably close

to the true parameter vector θi (Lemma 7), which implies that the average of our estimated parameters from

each epoch 1
i

∑i

j=1 θ̇j is probably close to the average of the true parameters from each epoch 1
i

∑i

j=1 θj

(Lemma 9). Next, we will show that the latter term 1
i

∑i

j=1 θj is a good approximation of θ∗ (Lemma 10).

Combining these steps via a triangle inequality and accounting for the probability A does not hold yields

the result in Lemma 1.

We first state two useful lemmas from the literature regarding the concentration of OLS estimates and the

matrix Hoeffding bound.

Lemma 7. When the event A holds, for any epoch i ∈ [N ] and δ ∈ [0,2/e], conditional on Fi =

σ(θ̇1, . . . , θ̇i−1), we have

Pr

(∥∥∥θ̇i− θi∥∥∥≥ 2σ
√

2d loge(2/δ)

λe

∣∣∣∣ Fi)≤ δ,
Proof of Lemma 7 When A holds, the random exploration periods are completed before T time steps,

guaranteeing that λmin(Vi,T ) ≥ λe. Thus, this result follows immediately from Theorem 4.1 of Zhu and

Modiano (2018), where we note that d+ loge(2/δ)≤ 2d loge(2/δ) for δ < 2/e. �

Lemma 8 (Jin et al. 2019). Let random vectors X1, . . . ,Xn ∈Rd, satisfy that for all i∈ [n] and u∈R,

E[Xi|σ(X1, . . . ,Xi−1)] = 0, Pr (‖Xi‖ ≥ u|σ(X1, . . . ,Xi−1))≤ 2 exp

(
− u2

2σ2
i

)
,

then for any δ > 0,

Pr

∥∥∥∥∥∥
∑
i∈[n]

Xi

∥∥∥∥∥∥≤ 4

√∑
i∈[n]

σ2
i loge(2d/δ)

≥ 1− δ .

We now show that the average of our estimated parameters from each epoch is close to the average of the

true parameters from each epoch with high probability.

Lemma 9. When the event A holds, for any i≥ 2, the following holds with probability at least 1− δ:∥∥∥∥∥1

i

i∑
j=1

(
θ̇j − θj

)∥∥∥∥∥≤ 8σ

√
d loge(4d/δ)

λei
.
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Proof of Lemma 9 By Lemma 7, we have for any u∈R,

Pr(‖θ̇i− θi‖ ≥ u | Fi) ≤ 2 exp(−λeu2/8dσ2) .

Furthermore, since the OLS estimator is unbiased, E[θ̇i|Fi] = θi. Thus, we can apply the matrix Hoeffding

inequality (Lemma 8) to obtain

Pr

(∥∥∥∥∥ 1

i− 1

i−1∑
j=1

(θ̇i− θi)

∥∥∥∥∥ ≤ 8

√
σ2d loge(4d/δ)

λe(i− 1)

)
≥ 1− δ.

Noting that i≤ 2(i− 1) for all i∈ {2, . . . ,N} concludes the proof. �

Lemma 10. When the event A holds, for any i≥ 2, the following holds with probability at least 1− δ:∥∥∥∥∥1

i

i∑
j=1

θj − θ∗

∥∥∥∥∥ ≤ 8

√
5λd loge(4d/δ)

i
.

Proof of Lemma 10 We first show a concentration inequality for the quantity ‖θj − θ∗‖ similar to that

of Lemma 7. Note that for any unit vector s∈R2d, u>(θi− θ∗) is a zero-mean normal random variable with

variance at most λ. Therefore, for any u∈R,

Pr
(
|s>(θj − θ∗)| ≥ u

)
≤ 2 exp

(
−u

2

2λ

)
. (22)

Consider W, a (1/2)-cover of the unit ball in R2d. We know that |W | ≤ 42d. Let s(θj) = θj − θ∗/‖θj − θ∗‖,
then there exists ws(θj) ∈W, such that ‖ws(θj)− s(θj)‖ ≤ 1/2 by definition of W. Hence,

‖θj − θ∗‖= 〈s(θj), θj − θ∗〉= 〈s(θj)−ws(θj), θj − θ∗〉+ 〈ws(θj), θj − θ∗〉 ≤
‖θj − θ∗‖

2
+ 〈ws(θj), θj − θ∗〉 .

Rearranging the terms yields

‖θj − θ∗‖ ≤ 2〈ws(θj), θj − θ∗〉 .

Applying an union bound to all possible w ∈W with inequality (22), we have for any u∈R,

Pr(‖θj − θ∗‖ ≥ u)≤Pr(∃w ∈W : 〈w,θj − θ∗〉 ≥ u/2)

≤ 2 · 42d exp

(
−u

2

2λ

)
≤ exp

(
5d− u2

2λ

)
.

If u2 ≤ 10λd, we have

Pr(‖θj − θ∗‖ ≥ u) ≤ 1 ≤ 2 exp

(
− u2

20λd

)
;

else if u2 = 10λd+ v for some v≥ 0, we have

Pr(‖θj − θ∗‖ ≥ u)≤ exp

(
− v

2λ

)
≤ 2 exp

(
− u2

20λd

)
.

Thus, for any u∈R, we can write

Pr(‖θj − θ∗‖ ≥ u)≤ 2 exp

(
− u2

20λd

)
. (23)
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Applying Lemma 8, we have

Pr

∥∥∥∥∥
∑i−1

j=1 θj

i− 1
− θ∗

∥∥∥∥∥≤ 4

√
10λd loge(4d/δ)

i− 1

≥ 1− δ.

The proof can be concluded by the observation i≤ 2(i− 1) for all i∈∈ {2, . . . ,N}. �

We can now combine Lemmas 4, 9 and 10 to prove Lemma 1.

Proof of Lemma 1 When the event A holds, we can use the triangle inequality and a union bound over

Lemmas 9 and 10 to obtain∥∥∥θ̂i− θ∗∥∥∥=

∥∥∥∥∥
∑i−1

j=1 θ̇j

i− 1
−
∑i−1

j=1 θj

i− 1
+

∑i−1
j=1 θj

i− 1
− θ∗

∥∥∥∥∥
≤

∥∥∥∥∥ 1

i− 1

i−1∑
j=1

(
θ̇j − θj

)∥∥∥∥∥+

∥∥∥∥∥ 1

i− 1

i−1∑
j=1

θj − θ∗

∥∥∥∥∥
≤ 8

√
2(σ2/λe + 5λ)d loge(4dN/δ)

i
,

with probability at least 1− 2δ, where we have use the fact that
√
a+
√
b≤

√
2(a+ b). By Lemma 4, the

event A does not hold with probability at most 2/(N2T 2). Thus, a second union bound yields the result.

�

C. Meta-DP Regret Analysis

Appendix C.1 provides the proof of Lemma 2 and the statement of an intermediate Lemma 11. Appendix

C.2 provides the proof of Theorem 2, following the proof strategy outlined in Section 3.3.

C.1. Intermediate Lemmas

Recall that for any t∈ {Ti+1, · · · , T}, the meta oracle maintains and samples from its posterior N
(
θTS
i,t ,Σ

TS
i,t

)
(see Algorithm 1), while our Meta-DP algorithm maintains and samples parameters from its posterior

N
(
θMD
i,t ,Σ

MD
i,t

)
(see Algorithm 2). Lemma 2 in Section 3.3 established the difference in Bayesian posteriors

between the meta oracle and our Meta-DP algorithm. The proof follows from the standard update rules for

Bayesian linear regression and is given below.

Proof of Lemma 2 Using the posterior update rule for Bayesian linear regression (Bishop 2006), the

posterior of the oracle at t= Ti + 1 is

θTS
i,Ti+1 =

(
Σ−1
∗ +σ

Ti∑
t=1

mi,tm
>
i,t

)−1(
Σ−1
∗ θ∗+σ

Ti∑
t=1

mi,tDi,t

)

=

(
Σ−1
∗ +σ

Ti∑
t=1

mi,tm
>
i,t

)−1(
Σ−1
∗ θ∗+σ

Ti∑
t=1

mi,tm
>
i,tθi +σ

Ti∑
t=1

mi,tε
TS
i,t

)
,

ΣTS
i,Ti+1 =

(
Σ−1
∗ +σ

Ti∑
t=1

mi,tm
>
i,t

)−1

.

Similarly, the posterior of the Meta-DP algorithm at t= Ti + 1 is

θMD
i,Ti+1 =

(
Σ−1
∗ +σ

te∑
t=1

mi,tm
>
i,t

)−1(
Σ−1
∗ θ̂i +σ

Ti∑
t=1

mi,tDi,t

)
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=

(
Σ−1
∗ +σ

Ti∑
t=1

mi,tm
>
i,t

)−1(
Σ−1
∗ θ̂i +σ

Ti∑
t=1

mi,tm
>
i,tθi +σ

Ti∑
t=1

mi,tε
MD
i,t

)
,

ΣMD
i,Ti+1 =

(
Σ−1
∗ +σ

Ti∑
t=1

mi,tm
>
i,t

)−1

.

The result follows directly. �

We also note that the prior-independent Thompson sampling algorithm employed in the exploration epochs

satisfies a meta regret guarantee:

Lemma 11. The meta regret of the prior-independent Thompson sampling algorithm in a single epoch is

Õ(d2T 1/2).

The proof can be easily adapted from the literature (see, e.g., Agrawal and Goyal 2013, Abeille and Lazaric

2017), and is thus omitted. We note that our normalization implies E[‖θ‖] = Θ(d1/2)). Lemma 11 ensures

that we accrue at most Õ(d2N0

√
T ) regret in the N0 exploration epochs; from Eq. (5), we know that N0

grows merely poly-logarithmically in N and T .

C.2. Proof of Theorem 2

Consider any non-exploration epoch i≥N0 +1. If upon completion of all exploration steps at time Ti+1, we

have that the posteriors of the meta oracle and our Meta-DP algorithm coincide — i.e., (θMD
i,Ti+1,Σ

MD
i,Ti+1) =

(θTS
i,Ti+1,Σ

TS
i,Ti+1) — then both policies would achieve the same expected revenue over the time periods Ti +

1, · · · , T , i.e., we would have

REV
(
θi, θ

MD
i,Ti+1,Σ

MD
i,Ti+1, T −Ti

)
= REV

(
θi, θ

TS
i,Ti+1,Σ

TS
i,Ti+1, T −Ti

)
.

By Lemma 2, we know that ΣTS
i,Ti+1 = ΣMD

i,Ti+1 always, so all that remains is establishing when θTS
i,Ti+1 = θMD

i,Ti+1.

Since the two algorithms begin with different priors but encounter the same covariates {xi,t}Tt=1 and take

the same decisions in t∈ {1, · · · ,Ti}, their posteriors can only align at time Ti + 1 due to the stochasticity in

the observations εi,t. As shown in Eq. (10) in Section 3.3, alignment occurs with θTS
i,Ti+1 = θMD

i,Ti+1 if

χMD
i −χTS

i =
1

σ
(M>i Mi)

−1M>i Σ−1
∗

(
θ∗− θ̂i

)
,

where we recall χTS, χMD
i were defined in Eqs. (8)-(9).

Now, we start by defining the clean event

E =

∥∥∥θ̂i− θ∗∥∥∥≤ 8

√
2(σ2/λe + 5λ)d loge(4dN

2T )

i
, Ti ≤Te ∀i≥N0 + 1

 , (24)

which stipulates that for every epoch i after the initial N0 exploration epochs, (i) our estimated prior mean

θ̂i is close to the unknown prior mean θ∗ (which holds with high probability by Lemma 1), (ii) and the event

A defined in Eq. (16) holds, ensuring that the number of exploration periods per epoch is small (which holds

with high probability by Lemma 4). Since E holds with high probability, we first focus on analyzing the meta

regret conditioned on E .

Denote the meta regret of epoch i conditioned on the event E defined in Eq. (24) as RN,T (i) | E . The next

lemma bounds the meta regret for any epoch i≥N0 under the event E .
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Lemma 12. The meta regret of an epoch i≥N0 + 1 satisfies

RN,T (i) | E = Õ

(
d2

√
T

i
+

√
d

N

)
.

Proof of Lemma 12 As noted earlier, during the exploration periods 1≤ t≤Ti, the meta oracle and our

Meta-DP algorithm encounter the same covariates {xi,t}Tt=1 and offer the same prices; thus, by construction,

they achieve the same expected revenue and the resulting meta regret is 0. Then, we can write

RN,T (i) | E =Eθi,θ̂i,χTS
i
,χMD

i

[
REV

(
θi, θ

TS
i,Ti+1,Σ

TS
i,Ti+1, T −Ti

)
− REV

(
θi, θ

MD
i,Ti+1,Σ

MD
i,Ti+1, T −Ti

)
| E
]

=Eθi,θ̂i,χMD
i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

MD
i,Ti+1,Σ

MD
i,Ti+1, T −Ti

)
| E
]

−Eθi,θ̂i,χTS
i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

TS
i,Ti+1,Σ

TS
i,Ti+1, T −Ti

)
| E
]
. (25)

We will use our prior alignment technique to express the first term in Eq. (25) in terms of the second term

in Eq. (25); in other words, we will use a change of measure suggested by Eq. (10) to express the true regret

of our Meta-DP algorithm as a function of the true regret of the meta oracle.

We start by expanding the first term of Eq. (25) as

EχMD
i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

MD
i,Ti+1,Σ

MD
i,Ti+1, T −Ti

)
| E
]

=

∫
χMD
i

exp
(
−
∥∥χMD

i

∥∥2
/2σ2

)
(2πσ2)te/2

(
REV∗ (θi, T −Ti)− REV

(
θi, θ

MD
i,Ti+1,Σ

MD
i,Ti+1, T −Ti

))
dχMD

i | E .

Given a realization of χMD
i , we denote χTS

i (χMD
i ) (with some abuse of notation) as the corresponding real-

ization of χTS
i that satisfies Eq. (10). Note that this is a unique one-to-one mapping. We then perform a

change of measure to continue:∫
χMD
i

exp
(
−
∥∥χMD

i

∥∥2
/2σ2

)
exp

(
−‖χTS

i (χMD
i )‖2 /2σ2

) exp
(
−
∥∥χTS

i (χMD
i )

∥∥2
/2σ2

)
(2πσ2)Ti/2

×
(
REV∗ (θi, T −Ti)− REV

(
θi, θ

MD
i,Ti+1,Σ

MD
i,Ti+1, T −Ti

)
dχMD

i

)
| E

=

∫
‖χMD

i ‖≤4σ
√
Ti loge(2NT )

exp
(
−
∥∥χMD

i

∥∥2
/2σ2

)
exp

(
−‖χTS

i (χMD
i )‖2 /2σ2

) exp
(
−
∥∥χTS

i (χMD
i )

∥∥2
/2σ2

)
(2πσ2)Ti/2

×
(
REV∗ (θi, T −Ti)− REV

(
θi, θ

MD
i,Ti+1,Σ

MD
i,Ti+1, T −Ti

)
dχMD

i

)
| E

+

∫
‖χMD

i ‖≥4σ
√
Ti loge(2NT )

exp
(
−
∥∥χMD

i

∥∥2
/2σ2

)
exp

(
−‖χTS

i (χMD
i )‖2 /2σ2

) exp
(
−
∥∥χTS

i (χMD
i )

∥∥2
/2σ2

)
(2πσ2)Ti/2

×
(
REV∗ (θi, T −Ti)− REV

(
θi, θ

MD
i,Ti+1,Σ

MD
i,Ti+1, T −Ti

)
dχMD

i

)
| E

≤ max
‖χMD

i ‖≤4σ
√
Ti loge(2NT )

exp

(∥∥χTS
i (χMD

i )
∥∥2−

∥∥χMD
i

∥∥2

2σ2

)∫
‖χMD

i ‖≤4σ
√
Ti loge(2NT )

exp
(
−
∥∥χTS

i (χMD
i )

∥∥2
/2σ2

)
(2πσ2)Ti/2

×
(
REV∗ (θi, T −Ti)− REV

(
θi, θ

MD
i,Ti+1,Σ

MD
i,Ti+1, T −Ti

)
dχMD

i

)
| E

+

∫
‖χMD

i ‖≥4σ
√
Ti loge(2NT )

exp
(
−
∥∥χMD

i

∥∥2
/2σ2

)
exp

(
−‖χTS

i (χMD
i )‖2 /2σ2

) exp
(
−
∥∥χTS

i (χMD
i )

∥∥2
/2σ2

)
(2πσ2)Ti/2

×
(
REV∗ (θi, T −Ti)− REV

(
θi, θ

MD
i,Ti+1,Σ

MD
i,Ti+1, T −Ti

)
dχMD

i

)
| E
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≤ max
‖χMD

i ‖≤4σ
√
Ti loge(2NT )

exp

(∥∥χTS
i (χMD

i )
∥∥2−

∥∥χMD
i

∥∥2

2σ2

)∫
χMD
i

exp
(
−
∥∥χTS

i (χMD
i )

∥∥2
/2σ2

)
(2πσ2)Ti/2

×
(
REV∗ (θi, T −Ti)− REV

(
θi, θ

MD
i,Ti+1,Σ

MD
i,Ti+1, T −Ti

)
dχMD

i

)
| E

+

∫
‖χMD

i ‖≥4σ
√
Ti loge(2NT )

exp
(
−
∥∥χMD

i

∥∥2
/2σ2

)
exp

(
−‖χTS

i (χMD
i )‖2 /2σ2

) exp
(
−
∥∥χTS

i (χMD
i )

∥∥2
/2σ2

)
(2πσ2)Ti/2

×
(
REV∗ (θi, T −Ti)− REV

(
θi, θ

MD
i,Ti+1,Σ

MD
i,Ti+1, T −Ti

)
dχMD

i

)
| E (26)

≤ max
‖χMD

i ‖≤4σ
√
Ti loge(2NT )

exp

(∥∥χTS
i (χMD

i )
∥∥2−

∥∥χMD
i

∥∥2

2σ2

)
EχTS

i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

TS
i,Ti+1,Σ

TS
i,Ti+1, T −Ti

)
| E
]

+EχMD
i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

MD
i,Ti+1,Σ

MD
i,Ti+1, T −Ti

)
| E ,
∥∥χMD

i

∥∥≥ 4σ
√
Ti loge(2NT )

]
×Pr

(∥∥χMD
i

∥∥≥ 4σ
√
Ti loge(2NT )

)
. (27)

Here, inequality (26) follows from the fact that REV∗(θi, T −Ti)≥ REV(θi, θ,Σ, T −Ti) for any choice of θ and

Σ. Thus, we have expressed the true regret of our Meta-DP algorithm as the sum of a term that is proportional

to the true regret of the meta oracle, and an additional term that depends on the tail probability of χMD
i .

To obtain our desired bound, we will argue that (i) the coefficient of the first term decays to 1 as the epoch

number i grows large, ensuring that our meta regret goes to 0 for later epochs, and (ii) the second term is

negligible with high probability since χMD
i is a subgaussian random variable.

We start by characterizing the coefficient of the first term in Eq. (27):

max
‖χMD

i ‖≤4σ
√
Ti loge(2NT )

exp

(∥∥χTS
i (χMD

i )
∥∥2−

∥∥χMD
i

∥∥2

2σ2

)

= max
‖χMD

i ‖≤4σ
√
Ti loge(2NT )

exp


∥∥∥nMD

i − 1
σ

(M>i Mi)
−1M>i Σ−1

∗

(
θ∗− θ̂i

)∥∥∥2

−
∥∥χMD

i

∥∥2

2σ2


= max
‖χMD

i ‖≤4σ
√
Ti loge(2NT )

exp


(
χMD
i

)>
(M>i Mi)

−1M>i Σ−1
∗

(
θ∗− θ̂i

)
σ3

+

∥∥∥(M>i Mi)
−1M>i Σ−1

∗

(
θ∗− θ̂i

)∥∥∥2

2σ4


≤ max
‖χMD

i ‖≤4σ
√
Ti loge(2NT )

exp


∥∥χMD

i

∥∥∥∥∥(M>i Mi)
−1M>i Σ−1

∗

(
θ∗− θ̂i

)∥∥∥
σ3

+

∥∥∥(M>i Mi)
−1M>i Σ−1

∗

(
θ∗− θ̂i

)∥∥∥2

2σ4


= exp

4
√
Ti loge(2NT )

∥∥∥(M>i Mi)
−1M>i Σ−1

∗

(
θ∗− θ̂i

)∥∥∥
σ2

+

∥∥∥(M>i Mi)
−1M>i Σ−1

∗

(
θ∗− θ̂i

)∥∥∥2

2σ4

 . (28)

Note that

4
∥∥∥(M>i Mi)

−1M>i Σ−1
∗

(
θ∗− θ̂i

)∥∥∥≤λmax

(
(M>i Mi)

−1
)√

λmax(MiM>i )λmax(Σ−1
∗ )
∥∥∥θ̂i− θ∗∥∥∥

≤32

√
Tix2

max(1 + p2
max)(σ2λ−1

e + 5λ)d loge(4dN
2T )

λ2
eλ

2i

≤c2σ2

√
dTi loge(4dN

2T )

i
. (29)
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Furthermore, by the definition of N0 in Eq. (5), we have for all i≥N0 + 1,

4
√
Ti loge(2NT )

∥∥∥(M>i Mi)
−1M>i Σ−1

∗

(
θ∗− θ̂i

)∥∥∥
σ2

+

∥∥∥(M>i Mi)
−1M>i Σ−1

∗

(
θ∗− θ̂i

)∥∥∥2

2σ4
≤ 1 . (30)

Combining Eqs. (28) and (30), and applying Lemma 20 in Appendix H yields

max
‖χMD

i ‖≤4σ
√
Ti loge(2NT )

exp

(∥∥χTS
i (χMD

i )
∥∥2−

∥∥χMD
i

∥∥2

2σ2

)

≤ 1 +
8
√
Ti loge(2NT )

∥∥∥(M>i Mi)
−1M>i Σ−1

∗

(
θ∗− θ̂i

)∥∥∥
σ2

+

∥∥∥(M>i Mi)
−1M>i Σ−1

∗

(
θ∗− θ̂i

)∥∥∥2

σ4

≤ 1 +
16
√
Ti loge(2NT )

∥∥∥(M>i Mi)
−1M>i Σ−1

∗

(
θ∗− θ̂i

)∥∥∥
σ2

≤ 1 + 4c2Ti

√
d loge(4dN

2T ) loge(2NT )

i
, (31)

where we have used Eq. (29) in the last step. Plugging this into Eq. (27), we can now bound

EχMD
i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

MD
i,Ti+1,Σ

MD
i,Ti+1, T −Ti

)
| E
]

≤

(
1 + 4c2Ti

√
d loge(4dN

2T ) loge(2NT )

i

)
EχTS

i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

TS
i,Ti+1,Σ

TS
i,Ti+1, T −Ti

)
| E
]

+EχMD
i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

MD
i,Ti+1,Σ

MD
i,Ti+1, T −Ti

)
| E ,
∥∥χMD

i

∥∥≥ 4σ
√
Ti loge(2NT )

]
×Pr

(∥∥χMD
i

∥∥≥ 4σ
√
Ti loge(2NT )

)
. (32)

As desired, this establishes that the coefficient of our first term decays to 1 as i grows large. Thus, our meta

regret from the first term approaches 0 for large i. We now show that the second term in Eq. (32) is negligible

with high probability. Similar to the proof of Lemma 10, for any u ∈ R, we can write Pr
(∥∥χMD

i

∥∥≥ u) ≤
2 exp (−u2/(10σ2Ti)) , which implies

Pr
(∥∥χMD

i

∥∥≥ 4σ
√
Ti loge(2NT )

)
≤ 1

NT
. (33)

Moreover, noting that the worst-case regret achievable in a single time period is 2pmaxxmax

√
1 + p2

max‖θi‖,

and Ti ≤Te on the event E , we can bound

EχMD
i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

MD
i,Te+1,Σ

MD
i,Ti+1, T −Ti

)
| E ,
∥∥χMD

i

∥∥≥ 4σ
√
Ti loge(2NT )

]
≤ 2(T −Ti)pmaxxmax

√
1 + p2

maxE[‖θi‖]

=O(
√
dT ) , (34)

where we recall from Eq. (21) that E[‖θi‖] =O(
√
d). Substituting Eqs. (33) and (34), into Eq. (32), we obtain(

1 + 4c2Ti

√
d loge(4dN

2T ) loge(2NT )

i

)
EχTS

i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

TS
i,Ti+1,Σ

TS
i,Ti+1, T −Ti

)
| E
]
+O

(√√
d

N

)
.

Substituting the above into Eq. (25), we can bound the meta regret of epoch i as

RN,T (i) | E
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≤

(
4c2Ti

√
d loge(4dN

2T ) loge(2NT )

i

)
EχTS

i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

TS
i,Ti+1,Σ

TS
i,Ti+1, T −Ti

)
| E
]

+O

(√
d

N

)

= Õ

(
d2

√
T

i
+

√
d

N

)
.

Here, we have used the fact that the meta oracle’s true regret is bounded (Theorem 1), i.e.,

EχTS
i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

TS
i,Ti+1,Σ

TS
i,Ti+1, T −Ti

)
| E
]
≤ Õ(d3/2

√
T ) .

�

The remaining proof of Theorem 2 follows straightforwardly.

Proof of Theorem 2 The meta regret can then be decomposed as follows:

RN,T = (RN,T | E) Pr(E) + (RN,T | ¬E) Pr(¬E)

≤ (RN,T | E) + (RN,T | ¬E) Pr(¬E) .

Recall that the event E is composed of two events: A (bounded by Lemma 4) and a bound on ‖θ̂i − θ∗‖
(bounded by Lemma 1). Applying a union bound over the epochs i ≥ N0 + 1 to Lemma 1 (setting δ =

1/(N2T )), and applying Lemma 4 yields a bound

Pr (E)≥ 1− 1/(NT )− 4/(NT 2)≥ 1− 5/(NT ) .

Recall that when the event E is violated, the meta regret is O(NT ), so we can bound (RN,T | ¬E) Pr(¬E)≤
O(NT × 1/(NT )) =O(1). Therefore, the overall meta regret is simply

RN,T ≤ (RN,T | E) +O(1) .

When N >N0, applying our result in Lemma 12 yields

N0∑
i=1

(RN,T (i) | E) +

N∑
i=N0+1

(RN,T (i) | E) +O(1) ≤N0Õ(d2
√
T ) +

N∑
i=N0+1

Õ

(
d2

√
T

i
+

√
d

N

)
+O(1)

≤
N∑
i=1

Õ

(
d2

√
T

i
+

√
d

N

)
+ Õ(d3

√
T )

= Õ
(
d2(NT )

1
2 + d3

√
T
)
,

where we have use the fact that
∑N

i=1 1/
√
i≤ 2

√
N in the last step. �

D. Convergence of Prior Covariance Estimate

Lemma 3 shows that, after observing i epochs of length T , our estimator Σ̂i is close to Σ∗ with high

probability. To prove Lemma 3, we first focus on the case where the event A defined in Eq. (16) holds. For

ease of notation, denote the average of the estimated parameters from each epoch as

θ̄i =
1

i− 1

i−1∑
k=1

θ̇k .

Then, recall from the definition in Eq. (12) that

Σ̂i =
1

i− 2

i−1∑
j=1

(
θ̇j − θ̄i

)(
θ̇j − θ̄i

)>
− σ2

i− 1

i−1∑
j=1

E
[
V −1
j,Tj

]
.
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Then, we can expand

∥∥∥Σ̂i−Σ∗

∥∥∥
op

=

∥∥∥∥∥∥ 1

i− 2

i−1∑
j=1

(
θ̇j − θ̄i

)(
θ̇j − θ̄i
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−
σ2
∑i−1

j=1 E
[
V −1
j,Tj

]
i− 1

−Σ∗

∥∥∥∥∥∥
op

=

∥∥∥∥∥∥ 1

i− 2

i−1∑
j=1

(
θ̇j − θ∗

)(
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− i− 1

i− 2

(
θ∗− θ̄i

) (
θ∗− θ̄i

)>− σ2
∑i−1

j=1

[
V −1
j,Tj

]
i− 1

−Σ∗

∥∥∥∥∥∥
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=

∥∥∥∥∥∥ 1

i− 2

i−1∑
j=1

(
θ̇j − θ∗

)(
θ̇j − θ∗
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− i− 1

i− 2
Σ∗−

σ2
∑i−1

j=1 E
[
V −1
j,Tj

]
i− 2

− i− 1

i− 2

(
θ∗− θ̄i

) (
θ∗− θ̄i

)>
+

1

i− 2
Σ∗+

σ2
∑i−1

j=1 E
[
V −1
j,Tj

]
(i− 1)(i− 2)

∥∥∥∥∥∥
op

≤ i− 1

i− 2

∥∥∥∥∥∥ 1

i− 1

i−1∑
j=1

(
θ̇j − θ∗

)(
θ̇j − θ∗

)>
−Σ∗−

σ2
∑i−1

j=1 E
[
V −1
j,Tj

]
i− 1

∥∥∥∥∥∥
op

+
i− 1

i− 2

∥∥∥∥∥∥(θ∗− θ̄i) (θ∗− θ̄i)>− 1

i− 1
Σ∗−

σ2
∑i−1

j=1 E[
[
V −1
j,Tj

]
(i− 1)2

∥∥∥∥∥∥
op

. (35)

We proceed by showing that each of the two terms is a subgaussian random variable, and therefore satisfies

standard concentration results. The following lemma first establishes that both terms have expectation zero,

i.e., Σ̂i is an unbiased estimator of the true prior covariance matrix Σ∗.

Lemma 13. When the event A holds, for any epoch i≥ 3,

E

[
1

i− 1

i−1∑
j=1

(
θ̇j − θ∗

)(
θ̇j − θ∗

)>]
= Σ∗+

σ2
∑i−1

j=1 E
[
V −1
j,Tj

]
i− 1

,

E
[(
θ∗− θ̄i

) (
θ∗− θ̄i

)>]
=

1

i− 1
Σ∗+

σ2
∑i−1

j=1 E
[
V −1
j,Tj

]
(i− 1)2

.

Proof of Lemma 13 When A holds, the random exploration time steps are completed before T time steps.

Denote

∆j = V −1
j,Tj

( Tj∑
t=1

εj,tmj,t

)
= θ̇j − θj . (36)

Then noting that E[θj ] = θ∗, E[∆j ] = 0, and E[∆j∆
>
j ] = σ2E

[
V −1
j,Tj

]
, we can write

E
[
(θ̇j − θ∗)(θ̇j − θ∗)>

]
=E

[
(θj + ∆j)(θj + ∆j)

>− θ∗θ>∗
]

=E
[
θjθ
>
j − θ∗θ>∗

]
+E

[
∆j∆

>
j

]
= Σ∗+σ2E

[
V −1
j,Tj

]
.

Summing over j and dividing by (i− 1) on both sides yields the first statement. For the second statement,

we can write

E
[
(θ̄i− θ∗)(θ̄i− θ∗)>

]
=E

[
θ̄iθ̄
>
i − θ∗θ>∗

]
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=E
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.

�

Having established that both terms in Eq. (35) have expectation zero, the following lemma shows that

these terms are subgaussian and therefore concentrate with high probability.

Lemma 14. When the event A holds, for any δ ∈ [0,1], the following holds with probability at least 1−2δ:∥∥∥∥∥∥∥
∑i−1

j=1

(
θ̇j − θ∗

)(
θ̇j − θ∗

)>
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∥∥∥∥∥∥
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λ2
e(i− 1)

.

Proof of Lemma 14 First, since the OLS estimator is unbiased, we have that E
[
θ̇j − θ∗

]
= 0 for all j, and

consequently, E
[
θ̄i− θ∗

]
= 0. Recall also our definition of ∆j from Eq. (36). Then, for any v ∈R2d such that

‖v‖= 1, we can write for all u∈R,

E
[
exp(u〈v, θ̇j − θ∗〉)

]
=E [exp(u〈v, θj − θ∗〉) exp(u〈v,∆j〉)]

=E [exp(u〈v, θj − θ∗〉)]E [exp(u〈v,∆j〉)]

= exp

(
u2v>Σ∗v

2

)
E [exp(u〈v,∆j〉)]

≤ exp

(
u2

(
λ

2
+

8σ2d

λ2
e

))
,

where we have re-used Lemmas 7 (from Appendix B) and 21 (from Appendix H) in the last step. Similarly,

E
[
exp(u〈v, θ̄− θ∗〉)

]
≤ exp

(
u2

i− 1

(
λ

2
+

8σ2d

λ2
e

))
.

By definition, along with Lemma 13, this implies that θ̇j−θ∗ is a

(√
(λλ2

e + 16σ2d)/2λ2
e

)
-subgaussian vector

and, similarly θ̄− θ∗ is a

(√
(λλ2

e + 16σ2d)/[λ2
e(i− 1)]

)
-subgaussian vector. Applying concentration results

for subgaussian random variables (see Lemma 22 from Appendix H), we have with probability at least 1− δ,∥∥∥∥∥∥∥
∑i−1

j=1

(
θ̇j − θ∗

)(
θ̇j − θ∗

)>
i− 1

−Σ∗−
σ2
∑i−1

j=1 E
[
V −1
j,Tj

]
i− 1

∥∥∥∥∥∥∥
op

≤ 16(λλ2
e + 16σ2d)

λ2
e

(√
5d+ 2 loge(2/δ)

i− 1
∨ 5d+ 2 loge(2/δ)

i− 1

)
.
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Similarly, with probability at least 1− δ,∥∥∥∥∥∥(θ∗− θ̄i) (θ∗− θ̄i)>− 1

i− 1
Σ∗−

σ2
∑i−1

j=1 E
[
V −1
j,Tj

]
(i− 1)2

∥∥∥∥∥∥
op

≤ 16(λλ2
e + 16σ2d)(5d+ 2 loge(2/δ))

λ2
e(i− 1)

.

Combining these with a union bound yields the result. �

The proof of Lemma 3 directly follows as shown below.

Proof of Lemma 3 When the event A holds, we can apply Lemma 14 to Eq. (35). It is helpful to note

that (i−1)/(i−2)≤ 2 and 1/(i−1)≤ 2/i for all i≥ 3, and 5d+2 loge(2/δ)≤ 10d loge(2/δ) for all δ ∈ [0,2/e].

By Lemma 4, the event A does not hold with probability at most 2/(N2T 2). Thus, a second union bound

yields the result. �

E. Meta-DP++ Regret Analysis

As discussed in Section 4.3, we consider two cases; we first focus on the more substantive case where N >N1.

We define a new clean event

J =

{
∀i≥N1 , Ti ≤Te ,

∥∥∥θ̂i− θ∗∥∥∥≤ 8

√
(σ2/λe + 5λ)d loge(4dN

2T )

i
,

∥∥∥Σ̂i−Σ∗

∥∥∥
op
≤ 128(λλ2

e + 16σ2d)

λ2
e

(√
5d loge(2N

2T )

i
∨ 5d loge(2N

2T )

i

)
,

‖θi‖ ≤ S+ 5σ
√
d loge(2N

2T )

}
, (37)

which stipulates that for every epoch after the initial N1 exploration epochs, (i) the event A defined in Eq.

(16) holds, ensuring that the number of exploration periods per epoch is small, (ii) our estimated prior mean

θ̂i is close to the unknown prior mean θ∗, (iii) our estimated prior covariance Σ̂i is close to the unknown prior

covariance Σ∗, and (iv) the true parameter for epoch i θi ∼N (θ∗,Σ∗) is not too large in the `2-norm. These

events all hold with high probability based on Lemma 4, 1, and 3, and by the properties of multivariate

Gaussians respectively; therefore the event J holds with high probability.

Denote the meta regret of epoch i conditioned on the event J defined in Eq. (37) as RN,T (i) | J . As noted

earlier, during the exploration periods 1≤ t≤ Ti, the meta oracle and our Meta-DP++ algorithm encounter

the same covariates {xi,t}Tt=1 and offer the same prices; thus, by construction, they achieve the same expected

revenue and the resulting meta regret is 0. Then, as in the proof of Theorem 2, we can write

RN,T (i) | J =Eθi,θ̂i,χTS
i
,χMDP

i

[
REV

(
θi, θ

TS
i,Ti+1,Σ

TS
i,Ti+1, T −Ti

)
− REV

(
θi, θ

MDP
i,Ti+1,Σ

MDP
i,Ti+1, T −Ti

)
| J
]

=Eθi,θ̂i,χMDP
i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

MDP
i,Ti+1,Σ

MDP
i,Ti+1, T −Ti

)
| J
]

−Eθi,θ̂i,χTS
i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

TS
i,Ti+1,Σ

TS
i,Ti+1, T −Ti

)
| J
]
. (38)

Appendix E.1 states two intermediate lemmas and Appendix E.2 provides the proof of Theorem 3.

E.1. Intermediate Lemmas

First, as we did for the proof of Theorem 2, we characterize the meta regret accrued by aligning the mean

of the meta oracle’s posterior θTS
i,Ti+1 and the mean of our Meta-DP++ algorithm θMDP

i,Ti+1.
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Lemma 15. For an epoch i≥N1,

Eθi,θ̂i,χMDP
i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

MDP
i,Ti+1,Σ

MDP
i,Ti+1, T −Ti

)
| J
]

≤
(

1 +
16c3d

3/2Ti log3/2
e (4dN2T )√
i

)
Eθi,θ̂i,χTS

i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

TS
i,Ti+1,Σ

MDP
i,Ti+1, T −Ti

)∣∣J ]+O

(
1

N

)
.

Proof of Lemma 15 By the posterior update rule of Bayesian linear regression (Bishop 2006), we have

θTS
i,Ti+1 =

(
Σ−1
∗ +σ

Ti∑
t=1

mi,tm
>
i,t

)−1(
Σ−1
∗ θ∗+σ

Ti∑
t=1

mi,tm
>
i,tθi +σ

Ti∑
t=1

mi,tε
TS
i,t

)
,

θMDP
i,Ti+1 =

((
Σ̂w
i

)−1

+σ

Ti∑
t=1

mi,tm
>
i,t

)−1((
Σ̂w
i

)−1

θ̂i +σ

Ti∑
t=1

mi,tm
>
i,tθi +σ

Ti∑
t=1

mi,tε
MDP
i,t

)
.

Denoting Mi =
(
mi,1 . . . mi,Ti

)
∈ R2d×Ti , we observe that prior alignment is achieved with θMDP

i,Ti+1 = θTS
i,Ti+1

when the following holds:

χTS
i −χMDP

i =
1

σ
(M>i Mi)

−1

[(
Σ̂w
i

)−1

θ̂i−Σ−1
∗ θ∗+

(
Σ−1
∗ −

(
Σ̂w
i

)−1
)((

Σ̂w
i

)−1

θ̂i +σMiM
>
i θi +Miχ

MDP
i

)]
︸ ︷︷ ︸

∆n

.

(39)

We denote the RHS of the above equation as ∆n for ease of exposition. While this expression is more

complicated than Eq. (10), it still induces a mapping between χTS
i and χMDP

i . We then proceed similarly to

the proof of Lemma 12. We start by expanding

EχMDP
i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

MDP
i,Ti+1,Σ

MDP
i,Ti+1, T −Ti

)∣∣J ]
=

∫
χMDP
i

exp
(
−
∥∥χMDP

i

∥∥2
/2σ2

)
(2πσ2)Ti/2

(
REV∗ (θi, T −Ti)− REV

(
θi, θ

MDP
i,Ti+1,Σ

MDP
i,Ti+1, T −Ti

))
dχMDP

i |J .

Given a realization of χMDP
i , we denote χTS

i (χMDP
i ) (with some abuse of notation) as the corresponding

realization of χTS
i that satisfies Eq. (39). It is easy to see that this is a unique one-to-one mapping. We then

perform a change of measure (similar to Eq. (27)) to continue:∫
χMDP
i

exp
(
−
∥∥χMDP

i

∥∥2
/2σ2

)
exp

(
−‖χTS

i (χMDP
i )‖2 /2σ2

) exp
(
−
∥∥χTS

i (χMDP
i )

∥∥2
/2σ2

)
(2πσ2)Ti/2

×
(
REV∗ (θi, T −Ti)− REV

(
θi, θ

MDP
i,Ti+1,Σ

MDP
i,Ti+1, T −Ti

)
dχMDP

i

)
|J

≤ max
‖χMDP

i ‖≤4σ
√
Ti loge(2NT )

exp

(∥∥χTS
i (χMDP

i )
∥∥2−

∥∥χMDP
i

∥∥2

2σ2

)
EχTS

i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

TS
i,Ti+1,Σ

MDP
i,Ti+1, T −Ti

)∣∣J ]
+EχMDP

i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

MDP
i,Ti+1,Σ

MDP
i,Ti+1, T −Ti

)∣∣∣J ,∥∥χMDP
i

∥∥≥ 4σ
√
Ti loge(2NT )

]
×Pr

(∥∥χMDP
i

∥∥≥ 4σ
√
Ti loge(2NT )

)
≤ max
‖χMDP

i ‖≤4σ
√
Ti loge(2NT )

exp

(∥∥χTS
i (χMDP

i )
∥∥2−

∥∥χMDP
i

∥∥2

2σ2

)
EχTS

i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

TS
i,Ti+1,Σ

MDP
i,Ti+1, T −Ti

)∣∣J ]
+

√
κ+S2pmaxxmax

√
1 + p2

max

N
, (40)

where the last step follows from Eqs. (33) and (34). Thus, we have expressed the true regret of our

Meta-DP++ algorithm as the sum of a term that is proportional to the true regret of a policy that is aligned
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with the meta oracle (i.e., it employs the prior N (θMDP
i,Ti+1,Σ

MDP
i,Ti+1)), and an additional term that is small

(i.e., scales as 1/N).

We now characterize the coefficient of the first term in Eq. (40):

max
‖χMDP

i ‖≤4σ
√
Ti loge(2NT )

exp

(∥∥χTS
i (χMDP

i )
∥∥2−

∥∥χMDP
i

∥∥2

2σ2

)

= max
‖χMDP

i ‖≤4σ
√
Ti loge(2NT )

exp

(∥∥χMDP
i + ∆n

∥∥2−
∥∥χMDP

i

∥∥2

2σ2

)

= max
‖χMDP

i ‖≤4σ
√
Ti loge(2NT )

exp

((
χMDP
i

)>
∆n

σ2
+
‖∆n‖2

2σ2

)

≤ max
‖χMDP

i ‖≤4σ
√
Ti loge(2NT )

exp

(∥∥χMDP
i

∥∥‖∆n‖
σ2

+
‖∆n‖2

2σ2

)

= max
‖χMDP

i ‖≤4
√
Ti loge(2NT )

exp

(
4
√
te loge(2NT )‖∆n‖

σ
+
‖∆n‖2

2σ2

)
. (41)

To continue, we must characterize ‖∆n‖. Applying the triangle inequality, we have that

‖∆n‖ ≤
1

σλe

∥∥∥∥(Σ̂w
i

)−1

θ̂i−Σ−1
∗ θ∗

∥∥∥∥+
1

σλe

∥∥∥∥(Σ−1
∗ −

(
Σ̂w
i

)−1
)((

Σ̂w
i

)−1

θ̂i +σMiM
>
i θi +Miχ

MDP
i

)∥∥∥∥ . (42)

The first term of Eq. (42) satisfies

1

σλe

∥∥∥∥(Σ̂w
i

)−1

θ̂i−Σ−1
∗ θ∗

∥∥∥∥
=

1

σλe

∥∥∥∥Σ−1
∗

(
θ̂i− θ∗

)
+

((
Σ̂w
i

)−1

−Σ−1
∗

)(
θ̂i− θ∗

)
+

((
Σ̂w
i

)−1

−Σ−1
∗

)
θ∗

∥∥∥∥
≤ 1

σλe

∥∥∥Σ−1
∗

(
θ̂i− θ∗

)∥∥∥+
1

σλe

∥∥∥∥((Σ̂w
i

)−1

−Σ−1
∗

)(
θ̂i− θ∗

)∥∥∥∥+
1

σλe

∥∥∥∥((Σ̂w
i

)−1

−Σ−1
∗

)
θ∗

∥∥∥∥
≤ 8

√
(σ2/λe + 5λ)d loge(4dN

2T )

σ2λ2
ei

(
1

λ
+

∥∥∥∥(Σ̂w
i

)−1

−Σ−1
∗

∥∥∥∥
op

)
+

S

σλe

∥∥∥∥(Σ̂w
i

)−1

−Σ−1
∗

∥∥∥∥
op

. (43)

Next, the second term of Eq. (42) satisfies

1

σλe

∥∥∥∥(Σ−1
∗ −

(
Σ̂w
i

)−1
)((

Σ̂w
i

)−1

θ̂i +σMiM
>
i θi +Miχ

MDP
i

)∥∥∥∥
≤

∥∥∥∥Σ−1
∗ −

(
Σ̂w
i

)−1
∥∥∥∥
op

σλe

(∥∥∥∥(Σ̂w
i

)−1

θ̂i

∥∥∥∥+
∥∥σMiM

>
i θi
∥∥+

∥∥Miχ
MDP
i

∥∥)

≤

∥∥∥∥Σ−1
∗ −

(
Σ̂w
i

)−1
∥∥∥∥
op

σλe

(∥∥∥∥(Σ̂w
i

)−1
∥∥∥∥
op

(S+ 1) +σTix2
max(p2

max + p4
max) + 4σpmaxxmax

√
Ti(1 + p2

max) loge(2NT )

)

≤

∥∥∥∥Σ−1
∗ −

(
Σ̂w
i

)−1
∥∥∥∥
op

σλe

(∥∥Σ−1
∗

∥∥
op

(S+ 1) +σTix2
max(p2

max + p4
max) + 4σpmaxxmax

√
Ti(1 + p2

max) loge(2NT )
)
(44)

≤
8pmaxxmax

√
Ti(1 + p2

max) loge(2NT )

∥∥∥∥Σ−1
∗ −

(
Σ̂w
i

)−1
∥∥∥∥
op

λe
, (45)
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where Eq. (44) follows from the fact that ‖Σ̂w
i ‖op ≥ ‖Σ∗‖op (on the event J ) and because both matrices are

positive semi-definite (since they are covariance matrices). Applying Lemma 23, we can simplify the term∥∥∥∥Σ−1
∗ −

(
Σ̂w
i

)−1
∥∥∥∥
op

=

∥∥∥∥(Σ̂w
i

)−1

(Σ̂w
i −Σ∗)Σ

−1
∗

∥∥∥∥
op

≤
∥∥∥∥(Σ̂w

i

)−1
∥∥∥∥
op

∥∥∥Σ̂w
i −Σ∗

∥∥∥
op

∥∥Σ−1
∗

∥∥
op

≤ 256(λλ2
e + 16σ2d)

λ2
eλ

2

√
5d loge(2N

2T )

i
. (46)

Combining Eqs. (42)–(46), we have

‖∆n‖ ≤ c3σd
√
dTi loge(4dN

2T ) loge(2N
2T )

i
.

Substituting this expression into Eq. (41), we can bound the coefficient

max
‖χMDP

i ‖≤4σ
√
Ti loge(2NT )

exp

(∥∥χTS
i (χMDP

i )
∥∥2−

∥∥χMDP
i

∥∥2

2σ2

)
≤ exp

(
8c3dTi loge(2N

2T )

√
d loge(4dN

2T )

i

)

≤ 1 + 16c3dTi log4
e(4dN

2T )

√
d

i
,

where we used Lemma 20 in the last step. Substituting into Eq. (40) yields the result. �

We will use Lemma 15 in the proof of Theorem 3 to characterize the meta regret from prior alignment.

The next lemma will help us characterize the remaining meta regret due to the difference in the covariance

matrices post-alignment.

Lemma 16. When the event J holds, we can write

T∏
t=Ti+1

max
θ:‖θ−θTS

i,t‖≤C
dN

(
θTS
i,t ,Σ

′MDP
i,t

)
dN

(
θTS
i,t ,Σ

TS
i,t

) ≤ 1 +
2c4d

5/2T log3/2
e (2N2T )√
i

≤ 3 .

Proof of Lemma 16 By the definition of the multivariate normal distribution, we have

max
θ:‖θ−θTS

i,t‖≤C
dN

(
θTS
i,t ,Σ

′MDP
i,t

)
dN

(
θTS
i,t ,Σ

TS
i,t

)
=

√
det
(
ΣTS
i,t

)
det
(
Σ′MDP
i,t

) max
θ:‖θ−θTS

i,t‖≤C
exp

((
θ− θTS

i,t

)> (
ΣTS
i,t

)−1 (
θ− θTS

i,t

)
2

−
(
θ− θTS

i,t

)> (
Σ′MDP
i,t

)−1 (
θ− θTS

i,t

)
2

)

=

√
det(ΣTS

i,t )

det(Σ′MDP
i,t )

max
θ:‖θ−θ′MDP

i,t ‖≤C
exp


(
θ− θTS

i,t

)>(
Σ−1
∗ −

(
Σ̂w
i

)−1
)(

θ− θTS
i,t

)
2



≤

√√√√√√det

((
Σ̂w
i

)−1

+
∑t−1

τ=1wi,τw
>
i,τ

)
det
(

Σ−1
∗ +

∑t−1
τ=1wi,τw

>
i,τ

) exp


C2

∥∥∥∥Σ−1
∗ −

(
Σ̂w
i

)−1
∥∥∥∥
op

2



≤

√√√√√√det

((
Σ̂w
i

)−1

+
∑t−1

τ=1wi,τw
>
i,τ

)
det
(

Σ−1
∗ +

∑t−1
τ=1wi,τw

>
i,τ

) exp

(
128C2(λλ2

e + 16σ2d)

λ2
eλ

2

√
5d loge(2N

2T )

i

)
,
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where we have used Eq. (46) in the last step. Since our estimated covariance matrix is widened, we know that

on the event J , Σ−1
∗ −

(
Σ̂w
i

)−1

= Σ−1
∗

(
Σ̂w
i −Σ∗

)(
Σ̂w
i

)−1

is positive semi-definite, and thus it is evident that(
Σ−1
∗ +

∑t−1
τ=1wi,τw

>
i,τ

)
−
((

Σ̂w
i

)−1

+
∑t−1

τ=1wi,τw
>
i,τ

)
is also positive semi-definite. Therefore, conditioned

on the clean event J , √√√√√√det

((
Σ̂w
i

)−1

+
∑t−1

τ=1wi,τw
>
i,τ

)
det
(

Σ−1
∗ +

∑t−1
τ=1wi,τw

>
i,τ

) ≤ 1 .

The result follows directly. �

E.2. Proof of Theorem 3

Proof of Theorem 3 First, we consider the “small N” regime, where N ≤ N1. In this case, our

Meta-DP++ algorithm simply executes N instances prior-independent Thompson sampling. Then, an imme-

diate consequence of Lemma 11 is that the meta regret is bounded by N × Õ
(
d2T 1/2

)
= Õ

(
d3(NT )5/6

)
because N ≤N1 =O(d4T 2). Thus, the result already holds in this case.

We now turn our attention to the “large N” regime, i.e., N >N1. The meta regret can be decomposed as

RN,T = (RN,T |J ) Pr(J ) + (RN,T |¬J ) Pr(¬J )

≤ (RN,T |J ) + (RN,T |¬J ) Pr(¬J ) .

Recall that the event J is composed of four events, each of which hold with high probability. Applying a

union bound over the epochs i ≥ N1 + 1 to Lemma 4, Lemma 1 (setting δ = 1/(N2T )), Lemma 3 (with

δ = 1/(N2T )), and Eq. (23) (with u= 5σ
√
d loge(2N

2T )), we obtain that

Pr (J )≥ 1− 4/(NT )− 6/(NT 2)≥ 1− 10/(NT ) .

Recall that when the event J is violated, the meta regret is O(NT ), so we can bound (RN,T |¬J ) Pr(¬J ) =

O(NT × 1/(NT )) =O(1). Therefore, the overall meta regret is simply

RN,T ≤ (RN,T | J ) +O(1) . (47)

Thus, it suffices to boundRN,T | J . As described in Section 4.3, we consider bounding the meta regret post-

alignment (t= Ti+1, · · · , T ), where our Meta-DP++ algorithm follows the aligned posteriorN (θTS
i,Ti+1,Σ

MDP
i,Ti+1).

Let N (θTS
i,t ,Σ

′MDP
i,t ) denote the posterior of our Meta-DP++ algorithm at time step t, if it begins with the

prior N (θTS
i,Ti+1,Σ

MDP
i,Ti+1) in time step Ti + 1, but follows the randomness of the oracle. Then, we can write

Eθi,θ̂i,
[
REV∗ (θi, T −Ti)− REV

(
θi, θ

TS
i,Ti+1,Σ

MDP
i,Ti+1, T −Ti

)∣∣J ]
=Eθi,θ̂i,

[∫
θ

REV∗ (θi, T −Ti)− REV (θi, θ,0,1)− REV
(
θi, θ

MDP
i,Ti+2,Σ

MDP
i,Ti+2, T −Ti− 1

)
dN (θTS

i,Ti+1,Σ
MDP
i,Ti+1)

∣∣∣∣J ]
=Eθi,θ̂i,

[∫
θ:‖θ‖≤C

REV∗ (θi, T −Ti)− REV (θi, θ,0,1)− REV
(
θi, θ

MDP
i,Ti+2,Σ

MDP
i,Ti+2, T −Ti− 1

)
dN (θTS

i,Ti+1,Σ
MDP
i,Ti+1)

∣∣∣∣J ]
+Eθi,θ̂i,

[∫
θ:‖θ‖>C

REV∗ (θi, T −Ti)− REV (θi, θ,0,1)− REV
(
θi, θ

MDP
i,Ti+2,Σ

MDP
i,Ti+2, T −Ti− 1

)
dN (θTS

i,Ti+1,Σ
MDP
i,Ti+1)

∣∣∣∣E]
≤Eθi,θ̂i,

[
max

θ:‖θ−θ′MDP
i,t ‖≤C

dN (θTS
i,Ti+1,Σ

′MDP
i,Ti+1)

dN (θTS
i,Ti+1,Σ

TS
i,Ti+1)

(
REV∗ (θi,1)− REV

(
θi, θ

TS
i,Ti+1,Σ

TS
i,Ti+1,1

))∣∣∣∣∣J
]
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+Eθi,θ̂i,

 max
θ:
∥∥∥θ−θTS

i,Ti+1

∥∥∥≤C
dN (θTS

i,Ti+1,Σ
′MDP
i,Ti+1)

dN (θTS
i,Ti+1,Σ

TS
i,Ti+1)

(
REV∗ (θi, T −Ti− 1)− REV

(
θi, θ

TS
i,Ti+2,Σ

′MDP
i,Ti+2, T −Ti− 1

))∣∣∣∣∣∣J


+Eθi,θ̂i,

[∫
θ:
∥∥∥θ−θTS

i,Ti+1

∥∥∥>C REV∗ (θi, T −Ti)dN (θTS
i,Ti+1,Σ

MDP
i,Ti+1)

∣∣∣∣∣J
]
,

where C = 5σ
√
d loge(NT ). Inductively, we have

Eθi,θ̂i,χTS
i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

TS
i,Ti+1,Σ

MDP
i,Ti+1, T −Ti

)∣∣J ]
≤Eθi,θ̂i,

[
T∏

t=Ti+1

max
θ:‖θ−θTS

i,t‖≤C
dN (θTS

i,t ,Σ
′MDP
i,t )

dN (θTS
i,t ,Σ

TS
i,t )

(
REV∗ (θi, T −Ti)− REV

(
θi, θ

TS
i,Ti+1,Σ

TS
i,Ti+1, T −Ti

))∣∣∣∣∣J
]

+

T∑
t=Ti+1

Eθi,θ̂i,

[
T∏

t=Ti+2

max
θ:‖θ−θTS

i,t‖≤C
dN (θTS

i,t ,Σ
MDP
i,t )

dN (θTS
i,t ,Σ

TS
i,t )

∫
θ:‖θ‖>C

REV∗ (θi, T − t)dN (θTS
i,t ,Σ

′MDP
i,t )

∣∣∣∣∣J
]
. (48)

Applying Lemma 16, we can bound Eq. (48) as

Eθi,θ̂i,χTS
i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

TS
i,te+1,Σ

MDP
i,te+1, T −Ti

)∣∣J ]
≤
(

1 +
2c4d

5/2T log3/2
e (2N2T )√
i

)
Eθi,θ̂i,

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

TS
i,Ti+1,Σ

TS
i,Ti+1, T −Ti

)∣∣J ]
+

T∑
t=Ti+1

Eθi,θ̂i,
[
3

∫
θ:‖θ‖>C

REV∗ (θi, T − t)dN (θTS
i,t ,Σ

′MDP
i,t )

∣∣∣∣J ]

=

(
1 +

2c4d
5/2T log3/2

e (2N2T )√
i

)
Eθi,θ̂i,

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

TS
i,Ti+1,Σ

TS
i,Ti+1, T −Ti

)∣∣J ]+O

(
1

N

)
,

where we used Eq. (23) in the last step. Thus, we have expressed the post-alignment meta regret as the sum

of a term that is proportional to the true regret of the meta oracle and a negligibly small term. We can now

apply Lemma 15 to further include the meta regret accrued from our prior alignment step to obtain

Eθi,θ̂i,χMDP
i

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

MDP
i,Ti+1,Σ

MDP
i,Ti+1, T −Ti

)∣∣J ]
≤
(

1 +
16c3d

3/2Ti log3/2
e (4dN2T )√
i

)(
1 +

2c4d
5/2T log3/2

e (2N2T )√
i

)
×Eθi,θ̂i,

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

TS
i,Ti+1,Σ

TS
i,Ti+1, T −Ti

)∣∣E]+O

(
1

N

)
.

As desired, this establishes that the coefficient of our first term decays to 1 as i grows large. Thus, our meta

regret from the first term approaches 0 for large i, and all other terms are clearly negligible.

Noting that N >N1 = Õ(d4T 2) in the “large N” regime, we can upper bound the meta regret as

N∑
i=N1+1

[(
1 +

16c3d
3/2Ti log3/2

e (4dN2T )√
i

)(
1 +

2c4d
5/2T log3/2

e (2N2T )√
i

)
− 1

]
×Eθi,θ̂i,

[
REV∗ (θi, T −Ti)− REV

(
θi, θ

TS
i,Ti+1,Σ

TS
i,Ti+1, T −Ti

)∣∣J ]+O

(
1

N

)
= Õ

(
N∑

i=N1+1

d4T
3
2

√
i

)
= Õ

(
d4N

1
2T

3
2

)
= Õ

(
d2(NT )

5
6

)
.

�
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F. Extension to Multiple Products with Substitution Effects

Thus far, we have considered the setting where the seller offers a single product in each epoch. In practice,

there may be many products offered simultaneously in an epoch, and there may be substitution effects across

these products (within a single epoch) that must be additionally modeled. We now show that our transfer

learning approach extends straightforwardly to this setting.

F.1. Formulation

We extend our single-product epoch formulation from Section 2 to a multi-product epoch formulation,

where K products are offered in each epoch. To capture substitution effects within an epoch, we will

employ an epoch-level joint demand model across all K products. Our demand model is an extension of

the multi-product demand model proposed by Keskin and Zeevi (2014), with the addition of (exogenous,

product-specific and customer-specific) features. The seller will now choose a price vector (one for each

product), observe a demand vector, and estimate the demand function jointly across all products given the

price/demand data.

As before, in epoch i ∈ [N ] at time t ∈ [T ], the seller observes a random feature vector xi,t ∈Rd, which is

sampled i.i.d. from a known distribution Pmpi . She then chooses a price vector pmpi,t =
(
pmpi,t,1 . . . p

mp
i,t,K

)> ∈RK ,

where pmpi,t,k is the chosen price for product k ∈ [K] in time t and epoch i. Recall that, owing to practical

constraints, we assume that the allowable price range is bounded across periods and products, i.e., pmpi,t ∈

[pmin,1]K and that 0< pmin < 1.6 The seller then observes the resulting induced demand for product k ∈ [K],

Dmp
i,t,k(p

mp
i,t , xi,t) = 〈αmpi,k , xi,t〉+

K∑
j=1

pmpi,t,j〈βmpi,k,j , xi,t〉+ εmpi,t,k ,

where αmpi,k ∈Rd and βmpi,k,j ∈Rd are unknown fixed constants throughout epoch i, and εmpi,t,k ∼N (0, σ2) is i.i.d.

Gaussian noise with variance σ2.

Observe that the demand for product k now depends not only on the price of product k but also on the

prices of all other products in this epoch — in particular, βi,k,j for j 6= k, captures the substitution effects

between products k and j under feature vector xi,t. For ease of notation, we collectively denote the demand

vector

Dmp
i,t (pmpi,t , xi,t) =

(
Dmp
i,t,1(pmpi,t , xi,t) . . . D

mp
i,t,K(pmpi,t , xi,t)

)
. (49)

Shared Structure: For ease of notation, we additionally define the matrix

θmpi =


αmpi,1 . . . αmpi,K
βmpi,1,1 . . . βmpi,K,1

... . . .
...

βmpi,1,K . . . βmpi,K,K

∈R(K+1)d×K ,

where θmpi is the unknown parameter matrix that must be learned within a given epoch in order for the

seller to maximize her revenues over T periods. When there is no shared structure between the {θmpi }Ni=1,

our problem reduces to N independent dynamic pricing problems.

6 Note that we have set pmax = 1; this is done WLOG since we can always normalize our parameters appropriately.
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However, as discussed in the main paper, we may have some shared structure that can be related across

products. We model the shared structure by positing that product demand parameters {θmpi }Ni=1 are inde-

pendent and identically distributed draws from a common unknown matrix normal distribution,7 i.e., θmpi ∼
MN (θmp∗ ,Σmp

∗ , IK) for each i∈ [N ]. (The third argument is IK because the noise terms are uncorrelated by

assumption.)

Assumptions: We impose the same assumptions made in Section 2.2. However, since we are now learning

(K2 +K)d instead of just 2d parameters (in the single-product case), we may naturally expect that the

constants to differ. Specifically, we take the constants in Assumption 1 to be xmax and Smp; similarly, we

take the constant in Assumption 3 to be λ
mp

and λmp for the multi-product setting.

Meta Oracle: As before, we define our meta oracle to be Thompson Sampling with a known prior.

Here, our meta oracle is TS(MN (θmp∗ ,Σmp
∗ , IK) , λmpe ) , the Thompson sampling algorithm with prior

MN (θmp∗ ,Σmp
∗ , IK) and an input parameter λmpe . The description is formally given in Algorithm 4 below.

As before, we perform random price exploration for Õ(1) time periods by offering initial prices

p(1) =


pmin

pmin

pmin

...
pmin

 , p(2) =


1

pmin

pmin

...
pmin

 , p(3) =


pmin

1
pmin

...
pmin

 , . . . p(K+1) =


pmin

pmin

...
pmin

1

 . (50)

The random exploration period ends once the minimum eigenvalue of the matrix
t∑

s=1

(
x>i,s pmpi,s,1x

>
i,s . . . p

mp
i,s,Kx

>
i,s

)> (
x>i,s pmpi,s,1x

>
i,s . . . p

mp
i,s,Kx

>
i,s

)
,

exceeds λmpe . For each subsequent time step, the meta oracle (1) samples the unknown product demand

parameters

θ̊mpi,t =


α̊mpi,t,1 . . . α̊mpi,t,K
β̊mpi,t,1,1 . . . β̊mpi,t,K,1

... . . .
...

β̊mpi,t,1,K . . . β̊mpi,t,K,K

 ,

from the posterior N
(
θTS
i,t , IK ⊗ΣTS

i,t

)
, and (2) solves and offers the resulting optimal price based on the

demand function given by the sampled parameters

pTS
i,t = arg max

p∈[pmin,1]K

K∑
k=1

[
pk

(
〈α̊i,t,k, xi,t〉+

K∑
j=1

pj ·
〈
β̊i,t,k,j , xi,t

〉)]
. (51)

Upon observing the actual realized demand Di,t

(
pTS
i,t , xi,t

)
, the algorithm computes the posterior

MN
(
θTS
i,t+1,Σ

TS
i,t+1, IK

)
for round t+ 1 (Rossi et al. 2005). The same algorithm is applied independently to

each epoch i∈ [N ].

The following theorem bounds the Bayes regret of our meta oracle:

Corollary 1 (Multi-Product meta oracle). The Bayes regret of Algorithm 4 satisfies

Bayes RegretN,T (π) = Õ
(
K3d

3
2N
√
T
)
,

when the prior over the product demand parameters is known.

7 See, e.g., Gupta and Nagar (1999) for the definition and properties of a matrix normal distribution.
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Algorithm 4 TS(MN (θmp∗ ,Σmp
∗ , IK) , λmpe ) : Thompson Sampling Algorithm

1: Input: The prior mean matrix θmp∗ and covariance matrix Σmp
∗ , the index i of epoch, the length

of each epoch T, the noise parameter σ, exploration parameter λe.
2: Initialization: t← 1,

(
θTS
i,t ,Σ

TS
i,t

)
← (θmp∗ ,Σmp

∗ ) ,

3: while λmin

(∑t−1
s=1

(
x>i,s pi,s,1x

>
i,s . . . pi,s,Kx

>
i,s

)> (
x>i,s pi,s,1x

>
i,s . . . pi,s,Kx

>
i,s

))
≤ λe do

4: Observe feature vector xi,t, and offer price pTS
i,t ← p(t mod K)

5: Observe demand Di,t

(
pTS
i,t , xi,t

)
, and compute the posterior MN

(
θTS
i,t+1,Σ

TS
i,t+1, IK

)
.

6: t← t+ 1.
7: end while
8: while t≤ T do
9: Observe feature vector xi,t.

10: Sample parameter θ̊i,t ∼MN
(
θTS
i,t ,Σ

TS
i,t , IK

)
.

11: Offer pTS
i,t according to eq. (51).

12: Observe demand Di,t

(
pTS
i,t , xi

)
, and compute the posterior MN

(
θTS
i,t+1,Σ

TS
i,t+1, IK

)
.

13: t← t+ 1.
14: end while

Corollary 1 follows directly from Theorem 1 in the single-product case. This is because, if a matrix X

follows the matrix Gaussian distribution MN (A,B,C), then vec(X), (i.e., the vectorized version of X that

concatenates each column of X to form a vector), follows the multivariate Gaussian distribution N (A,C⊗B)

(Gupta and Nagar 1999). Thus, since we still maintain a linear demand model, the only mathematical change

is that the unknown parameter has dimension (K2 +K)d instead of 2d. Thus, the same result applies by

replacing the d in Theorem 1 with (K2 +K)d.

F.2. Multi-Product Meta-DP Algorithm

The multi-product Meta-DP algorithm is presented in Algorithm 5. We first define some additional notation,

and then describe the algorithm in detail.

Additional Notation: Analogous to our previous notation, we use

mmp
i,t =


xi,t

pmpi,t,1xi,t
...

pmpi,t,Kxi,t

 ,

to denote the price and feature information and V mp
i,t =

∑t

τ=1m
mp
i,t

(
mmp
i,t

)>
to denote the Fisher information

matrix of round t in epoch i for all i∈ [N ] and t∈ [T ].

Algorithm Description: The first Nmp
0 epochs are treated as exploration epochs, where we define

Nmp
0 = (cmp2 )2d2(K2 +K)2 loge(4d(K2 +K)N2T ) loge(2NT )λmpe , (52)

and the constant cmp2 is defined as

cmp2 =
32
√

2x2
max(σ2 (λmpe )

−1
+ 5λ

mp
)

λmpe λmpσ2
.

As before, the Meta-DP algorithm proceeds differently for earlier exploration epochs and later epochs:
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1. Epoch i≤Nmp
0 : The Meta-DP algorithm runs the prior-independent Thompson sampling algorithm

(Agrawal and Goyal 2013, Abeille and Lazaric 2017) TS(MN (0,Ψmp · I(K+1)d, IK), λe), where

Ψmp = σ
√

2d loge(T (1 + 2x2
maxT )) +

√
20λ

mp
d loge(2T ).

2. Epoch i>Nmp
0 : the Meta-DP algorithm computes the ordinary least square (OLS) estimate of the

parameter vector θi for each of the past epochs; then, it averages these OLS estimates to arrive at an estimate

θ̂mpi of the prior mean θ∗, i.e.,

θ̂mpi =

∑i−1
j=1

(
V mp
j,T

)−1 (∑T

t=1m
mp
j,t D

mp
j,t (pmpj,t , xj,t)

)
i− 1

. (53)

Then, the Meta-DP algorithm runs the Thompson sampling algorithm (see Algorithm 4) with the estimated

prior MN (θ̂mpi ,Σmp
∗ , IK).

Algorithm 5 Meta-Personalized Dynamic Pricing Algorithm

1: Input: The prior covariance matrix Σmp
∗ , the total number of epochs N, the length of each

epoch T, the subgaussian parameter σ, and the set of feasible prices [pmin,1].
2: Initialization: N0 as defined in eq. (52).
3: for each epoch i= 1, . . . ,N do
4: if i≤N0 then
5: Run TS(MN (0,Ψmp · I(K+1)d, IK), λmpe ).
6: else
7: Update θ̂mpi according to eq. (53), and run TS

(
MN

(
θ̂mpi ,Σmp

∗ , IK

)
, λmpe

)
.

8: end if
9: end for

We now translate our previous upper bound on the meta regret of the single-product Meta-DP algorithm to

the multi-product setting.

Corollary 2 (Multi-Product Meta-DP). The meta regret of multi-product Meta-DP satisfies

RN,T (Meta-DP algorithm) = Õ
(
K4d2(NT )

1
2

)
.

Corollary 2 is again an immediate consequence of Theorem 2. Again, this is because, if a matrix X follows the

matrix Gaussian distributionMN (A,B,C), then vec(X), (i.e., the vectorized version of X that concatenates

each column of X to form a vector), follows the multivariate Gaussian distribution N (A,C⊗B) (Gupta and

Nagar 1999). In other words, we can map the multi-product prior MN (θmp∗ ,Σmp
∗ , IK) to the same form as

a single-product prior N (θmp∗ , Ik⊗Σmp
∗ ), by taking the unknown prior mean to be the vectorized vec(θmp∗ )

and the prior covariance to be
(
1 pmpi,t,1 . . . p

mp
i,t,K

)>⊗xi,t⊗1K (1K is the K×1 column vector with all entries

equal to 1). Thus, since we still maintain a linear demand model, the only mathematical change is that the

unknown parameter has dimension (K2 +K)d instead of 2d. Thus, the same result applies by replacing the

d in Theorem 2 with (K2 +K)d.

F.3. Multi-Product Meta-DP++ algorithm

The multi-product Meta-DP++ algorithm is presented in Algorithm 6. We first define some additional notation,

and then describe the algorithm in detail.
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Algorithm Description: The first Nmp
1 epochs are treated as exploration epochs, where we define

Nmp
1 = max{N0, 32(cmp3 )2d3(K2 +K)3T 2

e log3
e(2d(K2 +K)N2T ),

(cmp4 )2d4(K2 +K)4T 2 log3
e(2N

2T )} , (54)

and the constants are defined as

cmp3 =
16
√
σ2(λmpe )−1 + 5λ

mp

σλmpe λmp
+

256(λ
mp

(λmpe )2 + 16σ2)

(λmpe λmp)2

(
8
√

2xmax

λmpe
+

Smp

σλmpe

)
, c4 =

104σ(λ
mp

(λmpe )2 + 16σ2)

(λmpe λmp)2 .

As before, the Meta-DP++ algorithm proceeds differently for earlier exploration epochs and later epochs:

1. Epoch i≤Nmp
1 : the Meta-DP++ algorithm runs the prior-independent Thompson sampling algorithm

TS(MN (0,Ψmp · I(K+1)d, IK), λe), where

Ψmp = σ
√

2d loge(T (1 + 2x2
maxT )) +

√
20λ

mp
d loge(2T ) .

2. Epoch i>Nmp
1 : the Meta-DP++ algorithm computes an estimator θ̂mpi of the prior mean θmp∗ using Eq.

(53) (same as the multi-product Meta-DP algorithm), and an estimator Σ̂mp
i of the prior covariance Σmp

∗ as

Σ̂mp
i =

1

i− 2

i−1∑
j=1

(
θ̇mpj −

∑i−1
k=1 θ̇

mp
k

i− 1

)(
θ̇mpj −

∑i−1
k=1 θ̇

mp
k

i− 1

)>
−
σ2
∑i−1

j=1 E
[(
V mp
j,Tj

)−1
]

i− 1
, (55)

where, following the single-product Meta-DP++ algorithm, we define

θ̇mpi =
(
V mp
i,Ti

)−1

(
Ti∑
t=1

Dmp
i,t (pmpi,t , xi,t)m

mp
i,t

)
.

The widened posterior covariance is thus

Σ̂mp,w
i = Σ̂i +

128(λ
mp

(λmpe )2 + 8σ2dK(K + 1))

(λmpe )2

√
5dK(K + 1) loge(2N

2T )

i
· IK(K+1)d , (56)

where IK(K+1)d is the (K(K + 1)d)-dimensional identity matrix.

Then, the Meta-DP++ algorithm runs the Thompson Sampling algorithm (see Algorithm 4) with the estimated

prior MN
(
θ̂mpi , Σ̂mp,w

i , IK

)
.

Algorithm 6 Meta-Dynamic Pricing++ Algorithm

1: Input: The total number of products N, the length of each epoch T, the noise parameter σ,
and the set of feasible prices [pmin,1].

2: for epoch i= 1, . . . ,N do
3: if i≤Nmp

1 then
4: Run TS(MN (0,Ψmp · I(K+1)d, IK), λmpe ).
5: else
6: Update θ̂mpi and Σ̂mp

i according to Eqs. (53) and (55) respectively.
7: Compute widened prior mean estimate Σ̂mp,w

i according to Eq. (56).

8: Run TS
(
MN

(
θ̂mpi , Σ̂mp,w

i , IK

)
, λmpe

)
.

9: end if
10: end for

We now translate our previous upper bound on the meta regret of the single-product Meta-DP++ algo-

rithm to the multi-product setting.
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Corollary 3 (Multi-Product Meta-DP++). The meta regret of multi-product Meta-DP++ satisfies

RN,T (Meta-DP++ algorithm) = Õ
(

min
{
K4d2NT

1
2 , K8d4N

1
2T

3
2

})
= Õ

(
K6d3(NT )

5
6

)
.

Corollary 3 is again an immediate consequence of Theorem 3. The reasoning is exactly the same as for

Corollary 2, so we omit it. Essentially, we can map the multi-product prior to the same form as a single-

product prior, so that the only mathematical change is that the unknown parameter has dimension (K2 +K)d

instead of 2d. Thus, the same result applies by replacing the d in Theorem 3 with (K2 +K)d.

G. Additional Numerical Experiments

This section includes a number of additional numerical results, including comparison to a hierarchical Thomp-

son Sampling heuristic (G.1), examining the estimation error of the prior as a function of N (G.2), as well

as results under a revenue metric (G.3).

G.1. Comparison to Hierarchical Thompson Sampling

As discussed in Section 4.4, an alternative heuristic to leverage shared structure is to use hierarchical Thomp-

son Sampling, maintaining a posterior on the shared prior and updating it after each epoch. Instead of

using just the point estimate of the prior mean as the Meta-DP algorithm, hierarchical Thompson sampling

maintains a posterior on the shared prior and updates it after each epoch. We now compare the Meta-DP algo-

rithm to such a hierarchical approach with unknown prior mean θ∗.

Specifically, for each epoch i, hierarchical TS samples θ̃Hi from the posterior N (θHi ,Σ
H
i ) and runs the

Thompson sampling algorithm TS(N (θ̃Hi ,Σ∗), λe) for epoch i. Afterwards, like the Meta-DP algorithm, it

estimates θi via Eq. (6) and updates the posterior of θ∗ to N (θHi+1,Σ
H
i+1) using the standard Bayesian update

rules (see, e.g., Chapter 18 of Bolstad and Curran 2016), i.e.,

ΣH
i+1 =

[(
ΣH
i

)−1
+ Σ−1

∗

]−1

, θHi+1 = ΣH
i+1(ΣH

i )−1θHi + ΣH
i+1Σ−1

∗ θ̂i . (57)

Since we begin with a cold start, we follow Agrawal and Goyal (2013) and initialize the prior to θH1 = 0 and

ΣH
1 = λ̄

√
48d log2

e(T )I2d. The formal description is provided in Algorithm 7.

Algorithm 7 Hierarchical Thompson Sampling Algorithm

1: Input: The prior covariance matrix Σ∗, the total number of epochs N, the length of each epoch
T, the noise parameter σ, and the set of feasible prices [pmin, pmax].

2: Initialization: θH1 = 0 and ΣH
1 = λ̄

√
48d log2

e(T )I2d.
3: for each epoch i= 1, . . . ,N do

4: Sample θ̃Hi from the posterior N (θHi ,Σ
H
i ) and run TS

(
N
(
θ̃Hi ,Σ∗

)
, λe

)
.

5: Update θ̂i according to Eq. (6) and update θHi+1 and ΣH
i+1 according to Eq. (57).

6: end for

Following the same setup described in Section 5, Figure 5 shows results analogous to Figure 2 on synthetic

data for varying values of the feature dimension d. While the hierarchical algorithm significantly outperforms

prior-independent Thompson Sampling by leveraging shared structure, we find that it still underperforms
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(b) d= 10

Figure 5 Cumulative meta regret and Bayes regret for Meta-DP, prior-independent Thompson Sampling, and

hierarchical Thompson sampling for feature dimension (a) d= 1 and (b) d= 10.

compared to the Meta-DP algorithm for moderate to large values of N . The latter result appears to stem from

excessive exploration. In particular, while the Meta-DP algorithm uses the point estimate of the prior mean

for Thompson Sampling in non-exploration epochs, the hierarchical Thompson sampling algorithm still sam-

ples from its posterior, inducing additional unnecessary exploration. Thus, the Meta-DP algorithm performs

favorably in non-exploration epochs compared to hierarchical Thomspon Sampling.

G.2. Estimation Error of the Prior

The key ingredient to achieving low regret in the Meta-DP algorithm is successfully estimating the prior mean

θ∗. We now examine the estimation error ‖θ̂i − θ∗‖ of the Meta-DP algorithm as a function of the number

of epochs and various problem parameters. Figure 6 presents results for varying values of (a) the feature

dimension d, (b) the variance of the noise σ, (c) the magnitude of the prior mean ‖θ∗‖, and (d) the maximum

eigenvalue of the prior covariance matrix λ̄. We observe that the estimation error increases with the number
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of features and the noise (because we require more samples for convergence), the width of the prior (because

there is more uncertainty), and the magnitude of ‖θ∗‖ (because it scales the size of the problem).
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(b) Variance of noise terms
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Figure 6 Estimation errors in prior mean under different problem parameters.

G.3. Results on Cumulative Revenue

We now present representative results from the same experiments in Section 5, but compare performance in

terms of cumulative revenue. Figure 7 shows results analogous to Figure 1 for the Meta-DP algorithm and

Figure 3 for the Meta-DP++ algorithm on synthetic data; Figure 8 shows results analogous to Figure 4 on a

real dataset on auto loans. Our qualitative insights remain the same as discussed in the main paper.

H. Auxiliary Results

For completeness, we restate some well-known results from the literature.

The following lemma characterizes the Bayesian regret of Thompson sampling for the linear bandit.

Lemma 17 (Proposition 3 of Russo and Van Roy (2014)). Fix positive constants σ, c, and c′.

Denote the set of all possible parameters as Θ ∈Rd, the mean reward function as fθ(a) = 〈φ(a), θ〉 for some
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Figure 7 Cumulative revenue for Meta-DP, Meta-DP++, and benchmark algorithms on synthetic data.
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Figure 8 Cumulative revenue for Meta-DP++, and benchmark algorithms on real auto loan data.

φ :A→R, supρ∈Θ ‖ρ‖ ≤ c, and supa∈A ‖φ(a)‖ ≤ c′, and for each t, the noise term is σ-subgaussian, then the

Bayesian regret of the Thompson sampling algorithm is Õ(d
√
T ).

The following lemma characterizes the eigenvalues of a matrix Kronecker product.

Lemma 18 (Corollary 13.11 of Laub (2004)). Let A be a real-valued matrix with singular values λ1 ≥

. . .≥ λr > 0, and let B be a real-valued matrix with singular values λ′1 ≥ . . .≥ λ′s > 0, then A⊗B has r · s

singular values λiλ
′
j (i∈ [r] j ∈ [s]).

The following lemma upper bounds the covering number of a d-dimensional unit ball.

Lemma 19 (Wainwright 2019). For the d-dimensional unit ball, its δ covering number is upper bounded

by d loge(1 + 2/δ).

The following lemma provides an upper bound for the quantity exp(1/a) when a> 1.

Lemma 20. For any number a∈ [0,1], exp (a)≤ 1 + 2a.
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Proof of Lemma 20. We note that the function f(a) = exp(a)− 1− 2a is a convex function as

f ′′(a) = ea > 0, (58)

as well as that f(0) = 1− 1 = 0 and f(1) = e− 3< 0, so f(a)≤ 0 for all a∈ [0,1]. �

The following lemma makes a connection between the tail probability of a random variable and its moment

generating function.

Lemma 21 (Lemma 1.5 of Rigollet and Hütter (2018)). For a random variable X ∈ R such that

E[X] = 0 and for any u> 0,

Pr (|X|>u)≤ 2 exp

(
− u2

2σ2

)
,

we have for any v ∈R,

E[exp(vX)]≤ exp(4v2σ2).

The following lemma provides a concentration inequality for estimating the empirical covariance matrix.

Lemma 22 (Theorem 7.1 of Rinaldo (2017) and Theorem 6.5 of Wainwright (2019)). Let

X1, . . . ,Xn be n i.i.d. copies of the random vector X such that E[X] = 0,E[XX>] = Σ, and X is σ-subgaussian

vector. Then, the operator norm of the difference between the empirical covariance
∑n

i=1XiX
>
i /n and Σ

satisfies

Pr

(∥∥∥∥∑n

i=1XiX
>
i

n
−Σ

∥∥∥∥
op

≤ 32σ2

(√
5d+ 2 loge(2/δ)

n
∨ 5d+ 2 loge(2/δ)

n

))
≥ 1− δ

for any δ ∈ [0,1].

The following lemma shows that the operator norm of the product of two matrices is upper bounded by

the product of the operator norms of those matrices.

Lemma 23. For two matrices A and B, we have

‖AB‖op ≤ ‖A‖op‖B‖op.

Proof of Lemma 23. The statement can be easily concluded as follows.

‖AB‖op = max
x:‖x‖=1

‖ABx‖= max
x:‖x‖=1

‖ABx‖
‖Bx‖

‖Bx‖

≤ max
x:‖x‖=1

‖ABx‖
‖Bx‖

max
y:‖y‖=1

‖By‖

= max
Bx:‖x‖=1

‖ABx/‖Bx‖‖
‖Bx/‖Bx‖‖

max
y:‖y‖=1

‖By‖

=‖A‖op‖B‖op.

�

The following lemma compares the determinants of two positive semi-definite matrices.

Lemma 24. For two symmetric positive semi-definite matrices A and B, if A−B is positive semi-definite,

then det(A)≥ det(B).
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Proof of Lemma 24. Note that

det(A) = det(B+ (A−B)) = det
(
B

1
2

(
I +B−

1
2 (A−B)B−

1
2

)
B

1
2

)
= det(B) det

((
I +B−

1
2 (A−B)B−

1
2

))
≥det(B)

(
1 + det

(
B−

1
2 (A−B)B−

1
2

))
(59)

= det(B) + det(A−B)

≥det(B). (60)

Here, inequality (59) holds because
∏2d
k=1(1 +µk)≥ 1 +

∏2d
k=1 µk where µk is the kth eigenvalue of B−

1
2 (A−

B)B−
1
2 , and inequality (60) holds because A−B is positive semi-definite. �


