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Summary of the Problem. While state-of-the-art machine learning mod-
els have demonstrated impressive results in many domains, these models are
limited by the quality of their training data. This poses a significant challenge
in healthcare, since electronic medical record data suffers from a number of
causal issues and biases, thereby calling into question the reliability of resulting
predictive models. Furthermore, even when a reliable machine learning model
is available, it is unclear how its predictions can be leveraged in complicated
decision problems embedded in dynamic, uncertain environments. Specifically,
hospital decision-makers must additionally account for the dynamics in patient
disease progression and take a system-level operational perspective.

Summary of the Solution. To address the first challenge, we advocate for
human-in-the-loop machine learning, which involves domain experts in an inter-
active process of developing predictive models. Interpretability offers a promis-
ing way to facilitate this interaction. We describe an approach that offers a
simple decision tree interpretation for any complex blackbox machine learning
model. In a case study with physicians, we find that they were able to use the
interpretation to discover an unexpected causal issue in a personalized patient
risk score trained on electronic medical record data.

To address the second challenge, we advocate for building decision models
that integrate predictions of the disease progression at the individual patient
level with system models capturing the dynamic operational environments. We
describe a case study on hospital inpatient management, showing how to build a
Markov decision framework that leverages predictive analytics on patient read-
mission risk and prescribes the optimal set of patients to be discharged each
day.

Relevance post-COVID-19. The COVID-19 pandemic highlighted the need
to allocate limited hospital resources to patients with the highest risk (and po-
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tential benefit). This involves both accurately identifying heterogeneous treat-
ment effects through predictive analytics, and making operational decisions ac-
cordingly to maximize patient welfare subject to capacity constraints. This
chapter describes how to use predictive and prescriptive analytics to facilitate
hospitals managing limited resources.

1 Introduction

Predictive analytics holds great promise for data-driven decision-making in
healthcare operations. However, it is important to carefully account for biases in
observational patient data and operational structure to ensure successful imple-
mentation of predictive analytics. This chapter describes two case studies that
integrate predictive analytics with patient decision-making in hospitals: one
targets personalized interventions to patients, and the other seeks to improve
patient flow in complex inpatient ward settings.

In the personalized intervention setting, we consider a machine learning
model that uses electronic medical record data to predict which patients are at
risk for diabetes. While state-of-the-art machine learning models achieve strong
predictive performance, they are known to suffer from causal issues or biases. To
address this concern, physicians were presented with a human-understandable
explanation of the predictive model. Interestingly, physicians were successfully
able to leverage the explanation to discover an unexpected but important causal
issue in the data. Thus, caution must be exercised when deploying predictive
models to aid decision-making on actual patients; explainable AI presents an at-
tractive bridge for integrating domain expertise with high-performing machine
learning models.

In the patient flow setting, we consider a discharge decision-making problem
to balance the tradeoff between patient readmission risk and inpatient ward con-
gestion. Even with a predictive tool that is calibrated from observational data
and addresses the possible biases, it is still non-trivial to translate the predic-
tion into day-to-day operational decisions, particularly when the environment
is dynamic and uncertain. We describe in this case study how to build a sys-
tem model for the patient flow and how to integrate a personalized readmission
prediction tool to dynamically prescribe both how many and which patients to
discharge on each day.

Through these two case studies, we illustrate that predictive analytics alone
may not lead to better decisions. It must be implemented in tandem with careful
consideration of domain expertise and operational structure.

2 Personalized Interventions

Predictive analytics holds great promise for improving medical decision-making.
However, a key challenge is that predictive models are highly specialized to
perform well on the data on which they are trained. Yet, for a number of
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reasons, the training data may not be representative of the data observed by
the deployed model. One common reason is that the patient mix may differ
significantly across domains. For instance, patients that visit the ICU tend to
be far sicker than the general population, so a model that is trained to achieve
good performance on ICU patients may perform poorly on general patients.
Similarly, different hospitals often have systematic differences in how they code
diagnoses for patients; these differences can cause a predictive model that is
trained to perform well for patients at one hospital to perform very poorly at a
different hospital (see, e.g., [1]). Temporal shifts introduce additional challenges.
For instance, [2] finds that system-wide record-keeping changes in ICU data can
render machine learning models with time-agnostic features useless; in these
cases, one must be careful to discard old unrepresentative data or explicitly
model the change in dynamics.

A more subtle challenge is that predictive models are often trained on ob-
servational data—i.e., data that is obtained from monitoring existing patients
rather than by running a randomized clinical trial. However, these patients are
already subject to medical care, which systematically biases the observed data.
To illustrate, in one case study, [3] built a machine learning model predicting
mortality for pneumonia patients. Oddly, the model predicted that patients with
a history of asthma have lower mortality risk than the general population; this is
unexpected since asthmatics generally have higher asthmatic risk (if untreated).
Yet, the model was not wrong — this pattern was reflected in the observational
data due to systematic differences in treatment decisions. In particular, pneu-
monia patients with a history of asthma were usually admitted directly to the
ICU, where they received aggressive care that was so effective that it lowered
their mortality risk relative to even the general population. Unfortunately, as a
consequence, machine learning models trained on the data incorrectly learn that
asthma lowers mortality risk. In other words, even though the model performs
well on predicting patient outcomes in the observational data, it is not useful
for decision-making since it does not correctly distinguish which patients are in
need of treatment.

These challenges are particularly problematic for blackbox models, which
are models such as deep neural networks (DNNs) and random forests that are
difficult or impossible for humans to understand due to their complex, opaque
structure together with their use of a large number of explanatory variables.
Simple models such as decision trees are much easier to understand, yet they
are often outperformed by blackbox models. That is, there has traditionally
been a tension between predictive performance (maximized by using blackbox
models) and human-understandability to diagnose potential issues or biases in
the data (achieved by using interpretable models).

2.1 Explaining Blackbox Models

A promising middle ground is to train a blackbox model, but then leverage
techniques to interpret the prediction made by the blackbox model in a human-
understandable way. Broadly speaking, there are two kinds of techniques for
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interpreting blackbox models. The first kind produce local explanations, which
describe how the model made a prediction for a single input. For instance,
suppose we train a random forest model that predicts whether a patient has
diabetes based on their demographics, vitals, past diagnoses, and current lab
results. For a given patient—say, Bob—a local explanation may say the black-
box model predicts that Bob has diabetes due to his high glucose level. For
a different patient—say, Alice—a local explanation may say that the blackbox
model predicts that Alice has diabetes since she is currently taking insulin. In
other words, local explanations can help physicians understand the reasoning
behind a single prediction made by the blackbox model.

In contrast, global explanations attempt to explain the high-level reasoning
performed by the blackbox model across all patients in a given population. For
instance, given the machine learning model trained to predict diabetes together
with a dataset of patients, such a technique might approximate the blackbox
model using a simpler, interpretable model (e.g., a decision tree). Since the
simpler model approximates the blackbox model, we expect that major issues
with the blackbox model will also be reflected in the simple model. Thus, a
human decision-maker can use the global explanation to detect issues in the
blackbox model before it is deployed to be used in a real-world setting.

To this end, [4] propose the Decision Tree Extraction (DTExtract) algorithm,
which approximates an arbitrary blackbox model with a simple, accurate de-
cision tree. It uses a greedy strategy similar to CART [5], where it grows the
decision tree iteratively from the root down. At each step, it chooses the most
promising branch to add to the tree using a metric called the Gini coefficient,
which captures the “diversity” of the data in terms of its labels, preferring
branches that reduce diversity. A common challenge in constructing accurate
decision trees is that they easily overfit the training data. To overcome this
difficulty, the DTExtract algorithm leverages the ability to generate arbitrar-
ily large amounts of training data, by sampling new inputs and labeling them
using the blackbox model. In such problems, random sampling of the training
data can be extremely inefficient. Instead, one can use active learning to gener-
ate inputs that flow down a given path in the decision tree. Thus, DTExtract
uses active learning to efficiently sample new data points, labels them using the
blackbox model, and uses the resulting augmented training data set to construct
an interpretable decision tree.

2.2 Case Study

The remainder of this section is based on a case study from [4, 6], which demon-
strates how global explanations can be used to diagnose issues in blackbox mod-
els. In this setting, the authors sought to build a machine learning model pre-
dicting diabetes risk for patients. Diabetes is a leading cause of cardiovascular
disease, limb amputation, and other health problems; by preemptively predict-
ing which patients are likely to be diagnosed with diabetes, physicians can pro-
pose health interventions such as exercise and improved diet to reduce patient
risk. Indeed, clinical trials have demonstrated the effectiveness of preventative
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interventions in reducing risk for diabetes.
The blackbox model was trained using de-identified electronic medical record

data from multiple providers. Each patient was associated with several hundred
features extracted from their electronic medical records from previous visits
to the healthcare provider in the past three years. These features spanned
demographics, ICD-9 diagnosis codes, prescription medications, and lab test
results. The binary outcome variable was whether the patient received a type
II diabetes diagnosis in their most recent visit to the healthcare provider. This
dataset was preprocessed by domain experts to ensure that only information
prior to the diabetes diagnosis was available to the predictive model.

The authors first considered data from just the largest provider, which in-
cluded 578 unique patients. Following standard practice, 70% of the data was
used as a training set while 30% was used as a test set. Multiple machine learn-
ing models were tested, and the random forest model was found to be the best in
terms of predictive performance. However, as noted earlier, electronic medical
record data constitutes observational data which may suffer from various biases;
thus, a high-performing predictive model may form incorrect conclusions. Thus,
the authors applied the aforementioned DTExtract algorithm, which constructs
a decision tree that approximates the random forest. The resulting global ex-
planation of the random forest model is shown in Figure 1.
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Figure 1: Global explanation for the blackbox random forest trained to predict
diabetes for patients in the largest provider [6].

This global explanation was then shown to physicians to see if it was rea-
sonable. They derived a number of insights based on this explanation, some of
which suggested possible issues in the underlying random forest.
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Bias in Diagnosis for Sicker Patients. Most notably, the model appears
to reason about prior diagnoses that are unrelated to diabetes. In particular,
consider the subtree of Figure 1 rooted at the node labeled “Dermatophytosis
of nail.” This subtree applies to the subpopulation of patients who are over 50
years of age, have high cholesterol, and furthermore have not had a pre-operative
medical exam. According to the explanation, these factors are all indicators for
higher diabetes risk.

However, for this subpopulation, the decision tree predicts that patients
with medical diagnoses such as dermatophytosis of nail, abdominal pain, and
red blood cells in urine, are less likely to have diabetes. In other words, it says
that patients who already have other medical conditions have lower diabetes
risk. Physicians found this effect to be counterintuitive, since dermatophytosis
of nail has no known negative relation to diabetes; if anything, patients with
this condition should be more likely to have diabetes.

Upon further reflection, the physicians suggested a possible explanation: it
might be the case that patients who have these other health conditions are
more likely to have visited the physician recently. Thus, they are likely to have
received preventative measures to reduce their risk of diabetes. In contrast,
patients without prior health conditions may not have visited the physician, and
therefore may not have been recommended to undertake preventative measures.
An alternative explanation could be that patient records selected for training the
blackbox model were systematically riskier, inducing a similar unwarranted bias
in predictions. Statistical checks on the original random forest model suggested
that it also suffers from the same biases.

As described above, using this random forest to make decisions could lead
physicians to underestimate the diabetes risk of patients in this subpopulation,
and fail to recommend preventative measures to high-risk patients. The global
explanation enabled physicians to diagnose an important issue with using the
random forest. Once discovered, such issues can be addressed using standard
techniques (e.g., adding the number of recent visits as a control variable).

Comparison to Different Provider. The authors then repeated the same
process on data from the second-largest provider, which included 402 unique
patients. They trained a new random forest model and used DTExtract to
explain it; the resulting decision tree is shown in Figure 2.

This explanation was also shown to physicians, and they were asked to inter-
pret how it differed from the explanation trained on data from the first provider.
A key observation they had is that, unlike the previous explanation, this deci-
sion tree includes a diagnosis “Impaired fasting glucose,” which corresponds to
the standard lab test intended to evaluate diabetes risk. It appears that physi-
cians at this provider were more active about having patients undergo rigorous
glucose tests to identify early warning signs for diabetes. As a result, the two
predictive models treated this feature very differently. The predictive model
trained for the previous provider essentially ignored the feature (since it was
rarely diagnosed, and therefore rarely informative); in contrast, the predictive
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Figure 2: Global explanation for the blackbox random forest trained to predict
diabetes for patients in the second-largest provider [6].

model trained for this provider significantly benefits from taking it into account.
In general, it can be very difficult for hospital management to discover these

types of systematic differences in physician diagnosing behavior or data record-
ing across healthcare providers. The use of such explanations can aid physicians
to discover and shed light on these biases.

Non-Monotone Dependence on Age. The authors of [6] note an addi-
tional observation made by the physicians about the explanation in Figure 2.
The physicians noticed that the dependence on the patient’s age is actually non-
monotone. Normally, one would expect older patients to have higher diabetes
risk. Indeed, the explanation tends to assign higher risk to patients older than
48 years of age. However, it additionally singles out patients between 43 and
48 years of age with high cholesterol as having high diabetes risk (as opposed
to all patients older than 43 years of age with high cholesterol). The physicians
hypothesized the following explanation for this effect: high cholesterol is more
common in older patients, but for younger patients, its particularly abnormal
and therefore suggests a greater risk for diabetes. In this manner, explanations
can yield novel data-driven insights that can be tested in the future to further
improve patient targeting or care management.

3 Patient Flow Management

The previous case study illustrates the importance of leveraging domain knowl-
edge to correct possible biases in building predictive models from observational
data. Yet, even with a properly calibrated predictive tool, it could still be chal-
lenging for hospital managers to directly use prediction in solving complicated
decision problems, particularly in a dynamic, uncertain environment. Properly
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accounting for the dynamics in individual patient disease progression and more
importantly, the system-level operational perspective is critical when integrat-
ing predictive tools in decision-making. In the second case study, we describe an
illustrative example integrating predictive and prescriptive analytics to provide
a powerful yet easy-to-implement decision support tool in solving a critical issue
faced by many hospitals around the world: inpatient discharge management.

3.1 Background

A hospitalist makes many decisions that influence the cost of an
inpatient stay...but probably none has more impact than “Should this
patient go home today or tomorrow?”
–Cover story for American College of Physicians (ACP) Hospitalist,
October 2014 [7].

Inpatient discharge decision plays an important role in patient outcomes,
hospital financial performance, and patient flow management, impacting all care
providers from small community hospitals to major teaching hospitals. This
cover story further highlights the key tradeoff in making discharge decisions:
“Under the Affordable Care Act, it is still in hospitals’ financial interest to
discharge patients as soon as possible, but also to facilitate post-discharge care
and prevent 30-day readmissions. Rather than just lowering LOS (length-of-
stay), hospitals now aim to optimize it at the intersection of quality and cost.”

In other words, the key tradeoff in making discharge decisions lies at the in-
tersection of quality of care and cost. To alleviate inpatient ward overcrowding,
hospitals may discharge patients early; this practice shifts the burden to the
early discharged patients, who may experience increased risk of readmission,
mortality, and other adverse outcomes. On the other hand, when occupancy
levels are low, hospitals may keep patients longer, which can have a positive im-
pact on patient outcomes. How to balance this tradeoff in a dynamic, uncertain
environment has broad implications for patient flow, inpatient unit congestion,
quality of care, and post-discharge risk.

Currently, most hospitals engage in adaptive discharge practices in a reactive
and ad-hoc manner. For example, as illustrated by [8], when a hospital becomes
overcrowded, a communication is sent to all physicians asking them to discharge
as many patients as possible to free up beds. This unstructured approach may
end up discharging too many or too few patients, or discharging a suboptimal
set of patients. The authors of [8] note that the individual physicians lacking
a system perspective could be one reason why they react to occupancy crises
poorly. There is a growing need for analytically guided tools to help hospital
managers balance the delicate tradeoff between individual patient outcomes and
the system-level ward crowding [9].
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3.2 Case Study

The remainder of this section is based on a case study from [10], which develops a
decision support tool in discharge management to improve hospital patient flow
and reduce readmissions. Along with a data analytics company, the authors
have done a pilot implementation of this decision tool at a local community
hospital in the State of Indiana.

The first component that the community hospital asked for is a predictive
tool of patient readmission risk evolution as a function of her length-of-stay
(LOS) in the hospital. A substantial amount of efforts was spent to develop
this predictive tool. Similar to the first case study, the authors of [10] also
faced challenges from building the predictive tool based on observational data.
Specifically, most existing readmission prediction tools treat LOS as an ex-
ogenous variable. Directly applying these tools by varying LOS suffers from
endogeneity (sicker patients tend to stay longer and have a higher readmission
risk), which leads to the incorrect conclusion that extending length of stay for an
individual patient results in higher readmission risk. In addition, when apply-
ing the classical Cox proportional hazard model to predict readmission timing,
there were additional challenges including the excess zero count issue (i.e., most
patients are not readmitted [11]) and patient heterogeneity in the readmission
timing. [10] integrated several statistical methods and proposed one prediction
model that works reasonably well. Specifically, to overcome the three major
barriers – (1) excess zero count, (2) patient heterogeneity, and (3) endogene-
ity, the authors leveraged a two-stage framework. The framework predicted
the readmission probability in the first stage and the timing of readmission in
the second stage, eliminating the bias caused by the large proportion of non-
readmissions and addressing (1). In the second stage, a mixture component
was added to the Cox model to capture patient heterogeneity in readmission
timing, addressing (2). On top of this two-stage framework, an Instrumental
Variable approach was used as a pre-processing stage to eliminate endogeneity,
addressing (3). Figure 3 gives an example of the output from their prediction
tool. Each curve is the readmission risk “trajectory” of a patient produced from
the predictive tool, showing how the readmission probability would change with
each additional day that the patient spends in the hospital.

Nuances with using the predictive tool in discharge decision. After
this predictive tool was developed, hospital management still faced complex de-
cisions on how to turn the prediction into decision-making, in particular, how to
use this predictive tool in the day-to-day dynamic environment to decide on how
many patients and who to discharge on a given day. Discharge decisions must
not only account for the risk of each patient, but also for each patient’s risk
evolution over future days in conjunction with current and future occupancy
levels. The inpatient arrival day-of-week phenomenon further complicates dis-
charge decisions. To explain, consider the following simple illustrative example.
Patient A has a relatively high risk currently, but this risk is unlikely to improve
significantly by keeping the patient longer. Then the best decision readmissions
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Figure 3: Predicted readmission risk trajectory against length-of-stay (LOS)
from [10]. The plot shows the 90-day cumulative probability as a function of
LOS (50 random patients selected from the testing data).

may be to discharge patient A now. The reverse may be true for a patient with
lower discharge risk that may improve significantly by staying one day longer.
This contradicts the common industry that a simple risk threshold is sufficient
(i.e. discharge all patients when their risk drops below a certain level). In addi-
tion, the decisions are modulated by considering current and future occupancy
levels rather than risk alone. These complexities necessitate a forward-looking,
dynamic approach that cannot be easily intuited.

Accounting for operational aspects. As discussed, the discharge deci-
sions need to account for not only the medical aspect (patient’s risk evolution)
but also the system’s operational aspects (occupancy levels and future arrivals).
One needs to build a system model to capture the patient flow dynamics, which
then provides the basis for making dynamic discharge decisions.

Figure 4 illustrates a schematic representation for the system model built
in [10]. Consider a hospital ward that has a fixed number of beds (denote this
number of beds as N , e.g., N = 50 beds for a 50-bed inpatient unit). The
first box presents the inpatient ward, where the upper arrow coming to the
box represents new patient arrivals to this ward – often referred to as a service
station in the literature. The patient’s hospital length-of-stay corresponds to
the time of the patient receiving “service” in this station. The arrow coming
from this first box corresponds to the main decision we are considering here:
whether to discharge a certain patient that is currently in the box to home.
If the patient is discharged, she enters the recovery process represented by the
second box in Figure 4. After this recovery process, the patient could be either
discharged and not come back to the system, with probability 1 − r(LOS),
or be re-hospitalized with probability r(LOS). This readmission probability
r(LOS) is from the predictive model and depends on the individual patient
characteristics and how long the patient spent in the previous hospital stay
(LOS). The readmitted patients come back to the first box, forming a second
stream of input to the hospital station in addition to the new patient arrivals.
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Figure 4: Patient flow model of the hospital ward.

Two key features need to be accounted for when making dynamic decisions
based on this system model: (i) each patient may have her own readmission risk
trajectory (patient heterogeneity) – it is important and increasingly common to
have personalized risk predictions; (ii) the resource – inpatient beds – is limited,
which means the decisions to discharge each patient currently “in service” are
not independent but connected through the resource constraint. This also cor-
responds to interplay between the individual patient perspective and the system
perspective presented in the discharge problem. To capture these two features
and reflect the key tradeoff, one needs to setup an appropriate dynamic decision
framework – the output from which is the optimized recommendation on “who
and how many” patients to be discharged. A powerful and commonly used tool
for such dynamic decision is the Markov Decision Process (MDP) framework.

The first step to set up an MDP framework is to specify the “state variable,”
i.e., the information that hospital managers would take into account when mak-
ing the discharge decision. For example, how many patients are currently in
the system, how long each of these patients already spent, their current pre-
dicted readmission risk and future risk trajectory. The next step is to specify
the “action” to be taken and the “cost” associated with the action. Action
corresponds to the discharge decision, i.e., how many patients and who to dis-
charge each day in this setting. The cost associated with an action is to capture
the key tradeoff in a decision problem. Given that the tradeoff we consider in
this case study is the inpatient congestion versus patient readmission risk, two
cost terms are incorporated: the first is a congestion cost that depends on the
number of patients exceeding the bed capacity N , i.e., the overage cost that
reflects capacity shortage and ward congestion; the second is a readmission cost
that captures the predicted readmission penalty if we discharge a patient on a
certain day. Discharging patients early reduces the congestion cost but increases
the readmission cost; discharging fewer patients increases the congestion cost
but reduces the readmission cost. This tension is exactly why one needs to find
an optimal decision each day. The values of these two competing costs would be
dependent on management goals and how much emphasis (weight) is placed on
one or the other. One could conduct empirical or behavior study to infer these
cost parameters from data such as [12]; alternatively, the authors of [10] devel-
oped a tradeoff curve to show the performance under different combinations of
the cost parameters. This tradeoff curve allows managers to see what levels of
readmission risk they could achieve at a given hospital congestion level so that
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they could choose the desired operating regime.
In a typical MDP framework, the decision-maker is often assumed to aim

at minimizing the average cost over a certain period of time (e.g., a week or a
month), not just the current day. For example, hospital managers may want
to proactively discharge patients in anticipation of a large volume of arrivals
showing up the next day. Myopic decisions that only focus on what happened
today are often suboptimal. To account for future periods, one needs to describe
how the state would transition after an action is taken today. In the discharge
setting, the transition dynamic is in fact simple: those who are not discharged
today will stay in the hospital tomorrow, with their LOS being updated by one
day (readmission risk is updated accordingly); new patients arriving today will
occupy a bed or wait for a bed depending on the capacity and current occupancy
level. Mathematically, let

Xk =
(
X0

k , X
1
k , . . . , X

J
k

)′
,

denote the system state at day k, where Xj
k =

(
X1,j

k , X2,j
k , . . . , XM,J

k

)′
and

Xm,j
k denotes the number of type m patients who have spent j days in the

system, m = 1, . . . ,M, j = 0, . . . , J . The decision variables {Dm,j
k } represent

the numbers of patients, for each type m and each past length-of-stay j days,
that should be discharged on day k. Let Am,0

k denote the number of type m

new arrivals on day k, and A
′m,0
k denote the number of readmissions belonging

to type m. For each m, the state evolution follows:

Xm,0
k+1 = Am,0

k + A
′m,0
k ; (1)

Xm,j
k+1 = Xm,j−1

k −Dm,j−1
k , j = 1, . . . , J. (2)

Equation (1) captures the total arrivals to the hospital ward on day k. Equa-
tion (2) says that patients who have stayed j − 1 days in k become patients
who have stayed j days in k + 1, except for those who are discharged, Dm,j−1

k .
Readers are referred to [10] for more details of the transition probabilities and
MDP specification.

Who and how many to discharge. Once the MDP framework is formu-
lated, solving the MDP is often non-trivial with standard methods such as value
or policy iteration. A main reason is that there are often millions of states or
actions to consider for a realistic size problem. To overcome this well-known
curse-of-dimensionality, one often needs to identify structural properties in the
optimal policy and leverage approximation methods.

For the discharge problem, an interesting finding from [10] is that there is
a priority ranking in terms of the readiness to discharge. That is, the optimal
policy will discharge all patients of a higher readiness before discharging any
patients of a lower readiness. The ranking of the readiness depends on marginal
change in the readmission risk between today and a future day, not the absolute
value of the readmission risk. At a high level, when deciding between two
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patients on who to discharge, since the congestion cost they cause is the same
(as each occupying one bed), it is preferable to discharge the patient with a
smaller marginal change in the readmission risk between today and tomorrow.
This priority ranking also answers the “who to discharge” question.

Regarding the “how many to discharge” question, the intuition is to dis-
charge more patients when the occupancy is high and less when low. However,
computing the optimal number is much more complicated. The authors of [10]
leveraged an approximation for the cost-to-go for all future periods based on
the exact solution of the main problem for a quadratic cost structure. The
closed-form solution from this quadratic-cost problem preserves the aforemen-
tioned structural properties on the priority ranking and leads to a univariate
optimization. The univariate optimization is not only computationally efficient
for implementation, but also allows one to incorporate full patient heterogeneity
into decision-making and is robust to adapt to complex hospital environment
such as time-varying arrivals on different days of a week.

Tool implementation and Results. To demonstrate the value of such
an analytically guided tool, [10] developed a counterfactual study using a trace-
based simulation to compare how the hospital would have performed using their
discharge tool versus what the hospital actually did in the historical data. They
showed that the dynamic policy produced from their MDP framework could sig-
nificantly reduce readmission risk for medium- and high-risk groups (from 32%
to 28%) when extending the LOS slightly (from 3.33 to 3.55 days). The dynamic
policy was also able to correctly recommend intervention (i.e. extending LOS)
on over 50% of the patients that were readmitted in the data set.

Further, using an extensive simulation analysis, they showed that the dy-
namic policy produced from the MDP framework always dominated a static
policy that also used the predictive information. The improvement gained by
the dynamic policy is particularly significant for smaller hospitals and patients
with shorter average LOS. This finding again shows that, even with a predictive
tool, it is nontrivial to use the tool properly, particularly in a dynamic, chang-
ing environment that has many uncertainties. A sophisticated dynamic decision
support tool is often necessary.

On the other hand, the MDP framework, though sophisticated, was designed
for easy integration with hospital IT system and EHR. Together with their
partner hospital and a data analytics company, [10] tested and implemented
a cloud-based tool to provide discharge decision support. Figure 5 shows a
screen shot of the tool, which has recently been integrated into the hospital’s IT
infrastructure and provider workflow. The tool displays (a) patients currently in
the hospital unit (represented by each block), ranked with different color codes
in terms of their discharge readiness (the priority ranking mentioned above);
(b) discharge risk curve for future possible LOS of each patient (with past LOS
and generally recommended LOS).
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(a) Screenshot of main portal
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Figure 5: Screenshot of the discharge decision support web portal implemented
in the partner hospital of [10].

4 Conclusion and Additional Literature

Through the two case studies, we illustrate that caution must be exercised when
integrating predictive analytics with patient decision-making. In the first case
study, we demonstrate the importance of model interpretability and domain
knowledge in building predictive tools from observational data. Tools from
interpretable machine learning are critical to ensure that we do not entrust
faulty or biased predictive models with patient decision-making. In the second
case study, we further show that it is nontrivial to apply a readily-developed
predictive tool in complex decision-making. The prediction-decision framework
in the second case study has the potential to overcome many common challenges
faced more broadly in risk prediction in healthcare and other fields. Combining
both of these approaches paves a new road for personalized dynamic decision
problems, which are becoming increasingly necessary in healthcare and other
services industries. Potential applications include chronic disease management,
adverse event prediction for hospital inpatients due to conditions such as deep
vein thrombosis screening and sepsis, and proactive interventions for adverse
events in the elderly population.

Guide to the Literature. Many have studied directly building interpretable
predictive models via rule lists [13] or decision trees [14, 15]. Yet, blackbox pre-
dictive models often continue to outperform interpretable models on a range of
predictive tasks. Consequently, a literature has emerged interpreting blackbox
model predictions. While the first case study discussed DTExtract for approx-
imating a blackbox model, other methods seek to better understand different
aspects of the model. For example, LIME learns an interpretable model locally
around a given prediction [16], allowing one to reason about a particular pa-
tient’s prediction; saliency maps perform a similar role for deep neural networks
[17]. SHAP assigns each feature an importance value for a particular prediction
[18]. However, recent literature warns that the resulting interpretations may
be misleading since they identify correlations rather than causal effects [19].
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Alternatively, if one is concerned about data corruption or outliers, [20] uses
influence functions to identify (potentially problematic) training points that are
most responsible for a given prediction.

Discharge management to improve patient flow has received much attention
in the operations management literature. [21] is one of the earliest papers to
study the tradeoff between discharge risk and inpatient occupancy. The authors
focus on steady-state performance analysis under two fixed policies (with and
without early discharge). [22] considers the scenario when a new patient arrives
to a full ICU, doctors must decide which patient to discharge to free a bed. [23]
considers the joint decision of ICU admission and discharge decisions, where the
decision-maker determines whether to admit an arriving patient to the ICU or
to the general ward and also who to discharge early if a patient needs to be ad-
mitted to a full ICU. [24] studies the joint problem of coordinating elective case
mix and discharge policies. The authors find that coordination has benefits over
a siloed approach when costs of either the operating theatre and/or inpatient
beds are sufficiently high.

For tackling high-dimensional MDP problems with large state or action size,
Approximate Dynamic Programming (ADP) is a powerful technique ; see [25, 26]
for details and the references there. The approximation used in [10] is connected
to the broad literature of value function approximation, i.e., approximating the
value function by a linear combination of basis functions. Commonly used
methods for value function approximations include temporal-difference learning
method [27], Q-learning [28], and linear programming approach [29, 30]. Policy-
gradient based methods [31, 32] help address issues with large action space.
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