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A critical challenge in healthcare systems in Low- and Middle-Income Countries

(LMICs) is the efficient and equitable allocation of scarce resources, particu-

larly essential medicines. This problem is complicated by limited high-quality

data, which restricts the applicability of traditional data-driven techniques. We

propose a novel machine learning framework for essential medicines alloca-

tion, which leverages a combination of multi-task learning and decision-aware

learning to improve sample efficiency and ensure equitable allocation. In col-

laboration with the Sierra Leone national government, our framework has

been deployed nationwide as a decision support tool to help reduce waste

and improve essential medicines allocation. Our evaluation using synthetic

difference-in-differences analysis demonstrates a 19% increase in medicine con-
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sumption, with no changes to the supply, improving access for approximately

3.7 million women and children under five. Through experimental validation,

we demonstrate that our approach also significantly outperforms baseline ap-

proaches. Our work demonstrates the tangible impact of machine learning in

optimizing high-stakes decisions in resource-constrained settings, improving

efficiency while ensuring equity and cost-effectiveness.

Introduction

Machine learning has demonstrated enormous potential for improving healthcare, with applica-

tions ranging from screening and diagnosis (1–3), targeted testing (4), and automating medical

record generation (5). However, success stories have largely been limited to developed nations,

due to the critical need for high-quality data used to train models. Beyond the lack of quality

data, the healthcare needs in developing nations also differs significantly from those in developed

ones. For instance, according to a WHO health facility assessment, many African countries

report less than 40% availability of maternal essential medicines (6). This scarcity can pose

a serious threat to public health, especially for vulnerable populations that disproportionately

rely on public facilities; for instance, it forces patients to either pay inflated prices in the private

sector or forgo treatment altogether (7).

As a consequence, there is significant interest in how machine learning can be effectively

leveraged to improve healthcare in global health contexts. Challenges in developing nations

are often operational in nature due to infrastructure limitations such as poor stock manage-

ment systems (8) or insufficient staff training in logistics and inventory management (9). For

example, in 2010, Sierra Leone launched the Free Health Care Initiative (FHCI), one of the

largest healthcare initiatives and a top priority in its post-civil war recovery (10), providing

free medical care and products to pregnant women and children under five. However, these
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essential medicines are only distributed to healthcare facilities once a quarter, which can lead to

significant shortages in one location even if there is adequate supply in other locations. Efforts

such as Project Last Mile (PLM)1 have attempted to directly improve this supply chain, but have

encountered logistical obstacles that impede progress and country-wide scalability (11, 12). For

example, despite operating from 2018-2023, PLM’s expansion of electronic logistics manage-

ment systems to improve last-mile delivery reached only 15 government hospitals and 103 health

facilities (13)—approximately 8% of total facilities. Planning ahead is also challenging, since

supplies are often donated and can vary enormously every quarter.

Rather, a low-cost and promising avenue to scalably reduce shortages is to better match

limited supply with patient demand using a combination of prediction and optimization (14,15)—

in particular, given accurate facility-level demand forecasts for a product, existing supply chain

optimization techniques (16–18) can optimize facility-level allocations to minimize unmet

patient demand. However, forecasting demand is difficult due to the lack of high-quality data,

which is further exacerbated by high demand variability due to natural disasters or disease

outbreaks (7, 19, 20). Existing strategies employed in global health contexts include relying

on historical consumption data, morbidity-based forecasting, or proxy estimates; however,

these approaches tend to have limited accuracy (21–23). Furthermore, due to the lack of

modern computing infrastructure, 82% of deployments of these techniques rely either on ad hoc

manual forecasting (24) or on complex Excel spreadsheets with error rates as high as 40% (25).

For instance, Sierra Leone previously deployed an Excel tool developed by Crown Agents, a

non-profit international development organization, to support demand forecasting and supply

allocation for maternal essential medicines; however, our analysis finds that their tool produces

inaccurate forecasts resulting in excessive medicine shortages.

In this paper, we introduce a novel machine learning framework to optimize constrained
1Project Last Mile is an intensive effort to adapt The Coca-Cola Company’s highly effective supply chain

strategies to improving last mile delivery and the availability of essential medicines in LMICs.
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resource allocation, which is designed to satisfy two key criteria: it makes effective use of

limited and noisy historical data, and it is scalable and can be deployed in limited-compute

environments. At a high level, our system leverages machine learning (specifically, random

forests) to predict demand based on features constructed from historical features, and then applies

stochastic optimization to compute the best allocation based on this model’s predictions. To

tackle data scarcity and quality challenges, our system uses a multi-task learning strategy to

share data across different healthcare facilities (26), along with a novel decision-aware learning

algorithm (27–32) that preferentially allocates predictive power to predictions that have the

greatest impact on improving the downstream allocation optimization. Furthermore, it uses

catalytic priors (33) and auxiliary data sources to mitigate data inequity (i.e., where poorer

facilities have lower-quality data and therefore noisier forecasts).

In close collaboration with the Sierra Leone national government, we deployed our system

nationwide to improve allocation decisions for Sierra Leone’s FHCI policy. This deployment

was implemented via a staggered rollout across 1,058 government healthcare facilities across

the country, providing a source of natural variation for us to perform an econometric analysis

of the efficacy of our system. Our analysis finds a 19% increase in overall consumption of

essential medicines with no changes to the supply, indicating a significant improvement in

patient access. Importantly, our intelligent system achieved these gains while being extremely

cost-effective, requiring only a $30 monthly server fee and no additional workforce. The success

of our deployment highlights the ability for machine learning to address critical operational

challenges in improving healthcare delivery in developing nations.

Esssential Medicines Allocation System

Maternal mortality remains one of the most pressing global health challenges, particularly in

developing countries where access to essential health products is often limited by inefficient
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allocation systems (34). In Sierra Leone, despite the FHCI providing free medical care to

pregnant women and children, maternal mortality rate stands at 717 per 100,000 live births —

one of the highest in the world (35, 36).

Lack of access to essential medicines is one of the key contributors to preventable maternal

deaths (34). In Sierra Leone, the National Medical Supplies Agency (NMSA) (part of the Ministry

of Health and Sanitation (MoHS)) was created to manage the procurement and distribution of

medicines and medical supplies to public health facilities across the nation, including over

70 essential medicines for women and children. Supply of these medicines largely relies on

donations from international organizations. Prior to our collaboration, the NMSA distributed

these medicines across the country following a centralized two-level push system (37), where

the NMSA first allocates to 16 districts, and then districts allocate to individual health facilities

in their catchment (see details in Supplement §1.3). Allocation decisions were largely made via

an Excel tool with district managers making significant manual adjustments since they perceived

that the tool’s estimates did not accurately reflect the actual needs of health facilities.

Despite these efforts, there remained a significant shortage of medicines across the nation.

Critically, this shortage occurred even when the total supply was adequate—some health facilities

received a surplus of medicines2 while others suffered shortages. For instance, the District Health

Information Software 2 (DHIS2) shows significant heterogeneity in both stockouts and wastage—

e.g., in the district Tonkolili in 2022 Q1, 10% of facilities that had previous stockouts continued

to face supply shortages, while 22% of facilities with available stock had excess supply that could

have been redistributed. These findings suggest that more efficient allocation strategies—that

better match supply and demand—are a promising path to significantly reducing shortages.

Fig. 1 illustrates the system we developed and deployed. Our system begins by pulling

detailed supply and consumption data from government databases, including monthly data on

2Surpluses often did not carry over fully to the next quarter due to significant reported waste and expiration.
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Figure 1: System Overview. Every quarter, the system extracts and processes data from supply
records and the DHIS2 government database. It then trains a decision-aware prediction model
that informs a stochastic optimization procedure to make allocation decisions. The system further
provides a picking list for frontline workers to collect supplies from designated warehouses,
enabling efficient distribution to local health facilities. Finally, the resulting patient consumption
data is recorded for informing predictions and decisions in subsequent quarters.

amounts allocated, consumed, and remaining stock for each medical product at each health

facility (Supplement §1.1). We then perform significant pre-processing to ensure data reliability

and construct informative features for prediction (Supplement §1.2).

Our algorithm (the box in Fig. 1) can be divided into two components. First, we predict the

demand distribution for each facility-product pair using a novel decision-aware machine learning

framework described in the next section. Second, given the demand forecasts, our optimization

algorithm produces allocations designed to minimize the expected shortage of medicines. In

particular, for each product, it aims to minimize unmet demand—the total number of eligible

patients turned away—across facilities. To account for the stochastic nature of demand, we use
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the expected unmet demand according to the probabilistic demand forecasts. Unlike the prior

two-level approach, we output allocations directly from the central stock to individual health

facilities. This optimization can be solved efficiently via a linear program using a technique

known as sample average approximation (38). Once the allocation is determined, our system

assigns each batch of supplies to a warehouse based on proximity, stock availability, and product

expiration dates (Supplement §1.4). Finally, the ensuing patient consumption data is recorded in

government databases, and used to retrain our predictive models and optimize the next set of

allocation decisions in subsequent quarters.

Machine Learning for Demand Forecasting

Next, we describe our machine learning framework for predicting the demand distribution used

in our optimization algorithm. First, we construct a training dataset from historical demand

data.3 Given this dataset, we could apply a traditional strategy for time series forecasting such as

ARIMA (39). However, these approaches work poorly due to data scarcity—on average, only 28

reliable data points are available for each product-facility pair, which is too few to train accurate

forecasting models. Demand tends to be especially unpredictable in developing nations due to

variability in when patients seek out healthcare resources (19).

Instead, we design a machine learning framework that leverages three key techniques: (i)

multi-task learning to share data across facilities, (ii) catalytic priors to regularize the model in

data-poor regions to mitigate data inequity, and (iii) a novel decision-aware learning algorithm

to focus predictive power on facilities that are most relevant to the downstream optimization

problem. We summarize our techniques below, and provide details in Supplement §1.5.

First, our system uses a multi-task learning strategy where, for each grouping of related

health products, we train a single demand prediction model across all facility-product pairs. This

3We describe our data preprocessing pipeline to address unreliable or missing data in Supplement §1.2 & §1.5.2.
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facilitates knowledge transfer from locations with more available data to ones with less available

data (26,40,41). In particular, our strategy constructs features that facilitate generalization across

facility-product pairs (e.g., average demand in the past year), as well as features that capture

trends specific to a given facility-product pair (e.g., the facility type and location, product fixed

effect). Then, we train a random forest to predict demand from these features. This strategy

enables us to transfer knowledge across facilities and products while accounting for facility- and

product-specific trends to the best degree possible (Supplement §1.5.1).

Second, while multi-task learning can improve performance in data-poor locations, there

are still systematic differences between data-poor and data-rich locations (e.g., missing data

often arises disproportionately in poorer regions due to staffing shortages). Such missing-not-at-

random data (42) can lead to covariate shift, thereby reducing prediction accuracy for data-poor

locations. To mitigate this data inequity, our system leverages catalytic priors (33) to regularize

predictions for data-poor locations towards a simpler, less biased population-based model. In

particular, we first use census and satellite data to estimate catchment population, and then

estimate demand proportionally to the catchment population; this strategy ensures complete

coverage of all facilities without biases due to low-quality data. Then, we integrate this simple

model as a catalytic prior for our machine learning model, regularizing predictions for data-poor

locations towards the population-based model.

Third, our system leverages decision-aware learning (29, 30, 32, 43) to focus predictive

power on instances most relevant to the downstream optimization problem. Intuitively, not all

predictions matter equally—for example, since our goal is to prevent unmet demand, we are

primarily interested in how much we should stock facilities that are likely to be insufficiently

stocked for a particular product. Whereas a standard machine learning approach would treat

all facility-product pairs equally when training a prediction model, our decision-aware learning

algorithm focuses attention on facility-product pairs deemed more important to the decision-
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making objective—in this case, it upweights observations corresponding to likely under-stocked

facilities. We found that existing decision-aware learning algorithms were either computationally

intractable at our scale or incompatible with the rest of our prediction and optimization pipeline;

thus, we develop a novel decision-aware learning approach, which can be easily integrated with

existing data pipelines (Supplement §1.5.3). Prior to deploying our framework, we validated it on

historical data by showing that it outperforms several baselines on a held-out test set, including

existing decision-aware and traditional learning-based approaches (32, 43), a linear program

developed by the World Health Organization (44) as well as population-based models. Our

results demonstrate that our algorithm yields improvements in computational efficiency and

decision quality compared to these baselines (see Table S1 in Supplement §1.5.3).

Deployment

In collaboration with the NMSA, in May 2023, we deployed our system in 5 of the 16 districts in

Sierra Leone to perform facility-level allocations for the second quarter (June through August).

These districts—Tonkolili, Falaba, Karene, Kono, and Pujehun (see map of treated facilities in

Fig. 2)—were selected by the central government based on a randomized allocation schedule.

Prior to our deployment, the government had already established both the overall supply as well

as the total amounts to be allocated to control districts. The remaining supply was then to be

allocated to the treatment districts, maintaining the independence of supply quantities between

the two groups. Additional deployment details are in Supplement §2.1.

Beyond the performance of the allocation system, a critical priority was ensuring that it could

be seamlessly integrated into NMSA’s existing workflows. To this end, we conducted two tar-

geted training sessions for policymakers and frontline workers, providing the necessary technical

knowledge for operating our tool and understanding its implications. Implementation emphasized

stakeholder engagement at every level—outputs were presented in a familiar format that matched
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Figure 2: Map of treatment distribution. Yellow dots denote treated facilities (i.e., those in the
Tonkolili, Falaba, Karene, Kono, and Pujehun districts), and purple dots denote control facilities
(i.e., those in the Kailahun, Kenema, Bombali, Koinadugu, Kambia, Port Loko, Bo, Bonthe,
Moyamba, Western Area Rural, and Western Area Urban districts).

pre-existing workflows, and were reviewed by NMSA management as well as district pharma-

ceutical managers prior to finalization. This process facilitated a smooth transition to the new

allocation system while ensuring alignment with national and local healthcare priorities. Despite

variability in communication efficiency and workforce capacity across resource-constrained

districts, our system achieved a high compliance rate—measured as the absolute difference

between the actual and algorithmic allocations—ranging from 89% to 100% (see Table S2 in

Supplement §2.3). Given the high compliance rates, stakeholder buy-in, and early indications

of improved efficiency (detailed in the following section), the national government adopted our

system and expanded its use to all public-sector health facilities in Sierra Leone beginning in the

third quarter of 2023, and it continues to be used throughout the country today.
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Evaluation

We evaluate the effectiveness of our decision support tool at improving allocation efficiency.

While our optimization objective aims to minimize unmet demand, we do not directly observe

this quantity (we only observe when patients receive medicine, not when they are turned away

due to stockouts). Thus, in our evaluation, we examine the equivalent objective of maximizing

patient consumption, which is directly observed—since patient demand (which is fixed but

unobserved) equals consumption plus unmet demand, maximizing total consumption is equivalent

to minimizing total unmet demand. We provide an overview of our analyses here, and provide

details in Supplement §2; our results are summarized in Figs. 3 & 4.

Our main analysis focuses on 2023 Q2, where our system was deployed in a randomly

selected subset of districts, providing natural variation enabling us to estimate causal effects.

In particular, we estimate how much our system changed patient consumption levels in treated

districts (i.e., districts where our system was deployed) compared to what would have happened

without our intervention, known as the Average Treatment Effect on the Treated (ATT). We

estimate the ATT using a balanced panel dataset of 312 facilities in treated districts and 746

facilities in control districts using time series data beginning in 2022 Q3 (when the prior Excel

allocation tool was implemented)4 through 2023 Q3 (after which our tool was used nationwide).

Given the limited number of treated districts, we use a Synthetic Difference-in-Differences

(SynthDiD) regression (45)—which exploits temporal variation to improve statistical power—to

analyze the impact of our deployment.5 We provide details on our regression specification in

Supplement §2.2.
4Prior to the implementation of the Excel tool by Crown Agents, allocation procedures were highly inconsistent,

rendering the data unreliable.
5SynthDiD combines the strengths of Difference-in-Differences (46) (which assumes similar trends between the

treated and untreated groups in the pre-treated period) and Synthetic Controls (47) (which constructs a synthetic
control group that is similar to the treated units in terms of observed characteristics and outcome trends in the
pre-treated period). SynthDiD ensures that differences between treated units and synthetic control units remain
stable prior to treatment.
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Results for our main analysis are shown in Fig. 3 (time series trends for the treatment

and synthetic control groups), and the “SynthDiD” row in Fig. 4 (average improvement)—

in particular, the five treated districts experienced a statistically significant increase of 19%

(p < 0.01) in consumption.6 These results demonstrate that our deployment substantially

improves consumption. We validate our SynthDiD approach using a standard event-study

analysis (48), which shows that there are no statistically significant differences between treated

and control units prior to our intervention and that the change in consumption emerges only after

our system was deployed; see Supplement §2.2.

Next, to study the impact of compliance on the effectiveness of our approach, we use

instrumental variables (IVs) to estimate the effect of the treatment on compliant districts; we

provide details on our analysis strategy in Supplement §2.3, and detailed results in Table S3

of that section. Districts with higher compliance to our algorithmic allocations (i.e., >95%,

including Tonkolili, Falaba, and Karene) showed even stronger effects, with a 36% increase in

consumption (p < 0.001). This is notable because, after the government rolled out our system to

the entire country in Q3, all districts reported full compliance.

To understand the equity implications of our deployment, we examined previously under-

served facilities (i.e., facilities that experienced at least one stockout in the data prior to our

deployment). We found that these facilities saw an even more pronounced increase in consump-

tion of 44% (p < 0.01) (“Under-Served” row of Figure 4; details in Supplement §2.4), suggesting

that our system successfully addresses potential biases from uneven data quality and availability,

leading to more equitable resource allocation. Overall, these results suggest that our system has

substantially improved access to essential healthcare resources in treated districts.

As a robustness check, we perform a standard DiD analysis instead of using SynthDiD;

we find consistent results, with a 21% increase in consumption (p < 0.01) (“DiD” row of
6The % increase is calculated from SynthDiD counterfactual estimates as: (Average treatment outcome −

Average counterfactual outcome)/(Average counterfactual outcome).
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Figure 3: 2023 Q2 Deployment Result. ATT from SynthDiD: This plot shows the estimated
ATT of our 2023 Q2 deployment using SynthDiD. The x-axis shows time in quarters, and the
y-axis shows normalized consumption. The solid lines indicate the consumption pattern of the
treated (green) and control (red) groups. The vertical dashed line at 2023 Q1 marks the time of
deployment.

Figure 4; details in Supplement §2.4). In addition, a potential concern is due to missing data

from facilities that failed to record consumption in a particular month. Our main analysis drops

observations with missing outcomes, but we also perform robustness checks using multiple

standard imputation strategies—based on low-rank matrix completion (49), population-based

methods, and historical average consumption. The resulting SynthDiD ATT estimates are all

statistically significant and consistent with our main analysis (“Imputation” rows in Fig. 4; details

in Supplement §2.4).

To further support our results, we consider an alternative analysis where we compare results

across products instead of districts. In particular, we consider 25 other products that were

concurrently allocated using a different, pre-existing mechanism.7 The consumption levels for

these products can be used as a control group throughout our study period across all districts

7This was either because the allocation mechanism for these products was controlled by an external third party,
or because there was too little historical data to use our system.
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Figure 4: ATT Results. This figure shows ATT estimates with 95% confidence intervals for
various estimation methods and robustness checks, including our main SynthDiD regression,
the DiD regression, three different imputation strategies, restriction to under-served districts,
and approaches using alternative controls and staggered rollout (see details in S2.4). The x-
axis is percentage increase in treatment compared to control, with the dashed vertical line at 0
representing the null hypothesis of no effect. For consumption, positive treatment effect is better
(blue), and for stockouts, negative treatment effect is better (red). With the exception of DiD, all
methods are based on SynthDiD. As can be seen, all results are statistically significant, except
for our robustness check using stockout as the outcome, which is improved but not significantly
so; this is expected since it is not our primary objective.

in the country using a staggered treatment—i.e., an advantage of this analysis is that it can

be performed not just for the partial deployment in 2023 Q2, but also for the nationwide

implementation starting in Q3. We again find a statistically significant increase in consumption

of 48% (p < 0.01) (“Alt. Control” row in Fig. 4; details in Supplement §2.4). In other words,

analysis with this alternative control group also supports our finding that our system significantly

improved allocation efficiency.

Finally, we examine the impact of our system on stockouts. While reducing stockouts

might seem like a natural objective, optimizing for fewer stockouts produces highly undesirable

allocations—e.g., an optimal strategy is to allocate zero supply to a small number of high-volume

facilities, thereby ensuring that the remaining facilities are well-stocked. We find a directional
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reduction in stockouts but it is not statistically significant (p ≈ 0.11) (“Stockouts” row in Fig. 4;

details in Supplement §2.4)—i.e., our system does not inadvertently increase stockouts.

Conclusion

Our findings provide strong field evidence of the effectiveness of our novel machine learning

framework for resource allocation, significantly and equitably improving access to essential

medicines in a highly-constrained environment like Sierra Leone. By replacing paper-based man-

ual processes with automated, data-driven decision making, our system streamlines supply chain

management, reduces administrative burdens, and adapts to real-time changing consumption

patterns, enabling facilities to better align limited supply with patient demand.

To ensure sustainable impact, we developed a web application with an intuitive user interface,

which is now owned by the Sierra Leone government. This system integrates with their govern-

ment databases to automate the entire process, from data extraction and processing to generating

final allocation results. Notably, it operates without any additional workforce requirements and

costs only $30 per month in server fees. Their officials and staff continue to use this system at

present for making allocations throughout the country.

Beyond the specific context of Sierra Leone, this work highlights the promise of machine

learning to improve resource allocation in highly budget-constrained settings. While different

governance structures would require different deployment processes, our framework is flexible

and light-touch for easy adoption in other contexts.
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Supplementary Materials

§1 describes the data and methods supporting the design of our allocation system; §2 describes

the national deployment of our system and the empirical evaluation of its effectiveness.

1 Materials and Methods

We first outline the data sources (§1.1) and detail how raw data are processed and constructed for

our machine learning model and evaluation (§1.2). Second, we review the allocation mechanism

used in Sierra Leone prior to adopting our approach (§1.3). Then, we formalize resource

allocation as an optimization problem (§1.4). Finally, we present our end-to-end machine

learning pipeline for demand estimation and decision-aware allocation (§1.5), which spans:

• Multi-Task Learning (§1.5.1): we exploit cross-facility and cross-product patterns to

improve predictive accuracy with limited data.

• Catalytic Priors (§1.5.2): we construct catalytic priors from population estimates to address

data quality issues such as censoring and missing values.

• Decision-Aware Learning (§1.5.3): we propose a novel method for re-weighting training

data to align the prediction objective with the downstream optimization objective, thus

shifting the focus from prediction accuracy to improving public health.

1.1 Datasets

List of public health facilities. We obtain information on the ID, latitude, longitude, and type

of public health facilities in Sierra Leone (50); this data was cross-verified with frontline staff at

the National Medical Supplies Agency (NMSA).
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Consumption data. To construct outcomes and features for demand prediction, we extract

data from the District Health Information Software 2 (DHIS2) used by Sierra Leone Ministry

of Health and Sanitation (MoHS) to collect and manage health data. The country transitioned

from paper-based to electronic reporting of health data in public health facilities in 2019 (51).

We extract monthly facility-level data on consumption, opening balance, closing balance, and

stockouts of 62 medicines and medical supplies across all the public health facilities from

October 2019 to November 2023 (see Table S5 for a list of products).

Supply data. We collect expiry date8 and available supply units of all medicines and medical

supplies per quarter from mSupply (52), a pharmaceutical logistics and warehouse management

system used in Sierra Leone (and over 40 other countries). Prior to each allocation quarter, local

staff are required to conduct stock counts and record the information in mSupply. In addition,

we use invoice records from the mSupply system to determine the stock received by each public

health facility to evaluate compliance for district-level allocations. Table S6 provides summary

statistics on the supply of each product.

Catchment population. Estimating granular population is particularly challenging in devel-

oping countries. To address this, we leverage multiple publicly available datasets to estimate

each health facility’s catchment population (i.e., the number of people each health facility is

expected to serve): the WorldPop Global Project Population Data (53), the global friction surface

dataset (Oxford/MAP/friction_surface_2019) from Google Earth (54), and satellite

imagery (55) also accessed through Google Earth. We utilize these to create population estimates

for our catalytic priors (see §1.5.2).

8In line with the NMSA’s existing practice, we prioritize allocating near-expiry products to larger districts, where
higher consumption minimizes waste by ensuring supplies are used up prior to expiration.
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1.2 Data Processing

Training data for demand prediction model. The data for training our demand prediction

model is derived from the historical consumption data extracted from DHIS2. We use this time

series data both to construct the demand ξ∗t,n in the current period t for facility n that we are trying

to predict, as well as the features xt,n for prediction. For example, we construct facility-specific

features, including: consumption, product, facility ID, facility type, latitude and longitude of

the facility’s geo-location, district, average consumption of the product for the facility in the

past {1, 2, 3, 4, 5, 6} months respectively, standard deviation of the consumption in the past 3

and 6 months respectively, total sample size for the facility-product pair, year, month, average

consumption of the product across facilities in the past {1, 2, 3, 4, 5, 6, 10} months respectively.

These features were determined based on domain knowledge and feature engineering.

This data can sometimes be unreliable due to random or inconsistent data entry at individual

facilities, requiring careful preprocessing. First, we exclude any observations where the inflow

and outflow are inconsistent:

Closing Balance

̸= Opening Balance + Quantity Received − Quantity Dispensed + Adjustment/Loss

Second, we remove observations where all recorded quantities were zero, since this likely

indicates the use of a default value. Third, we exclude extreme outliers—specifically the top and

bottom 5% of values, to mitigate the impact of potential data entry errors. Table S7 summarizes

the percentage of data that is excluded due to data quality issues by product.

One major challenge is that we only observe consumption, which does not equal demand

when there is a stockout; this issue is called demand censoring (56). To ensure we are predicting

actual demand, we use a standard strategy where we drop censored observations (57). In

particular, when constructing (xn,t, ξn,t) pairs for training, we only include observations where
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no stockout occurred; then, consumption is equal to the demand, so we can take it to be ξn,t.

One limitation of this strategy is that it introduces covariate shift, since there may be systematic

differences between time periods/facilities where stockouts occur and those where they do not

occur. Covariate shift has the potential to degrade performance of the model compared to what is

expected based on test set evaluation. Thus, we use unbiased population-based models that do

not suffer from censoring as a catalytic prior when training our predictive models to mitigate the

bias (see details in §1.5.2). We also perform several robustness checks to ensure the quality of

our model, which are described in §2.4. Importantly, our econometric evaluation is performed

using consumption outcomes alone, which are fully observed, so they are not affected by demand

censoring (unlike our predictive model).

Panel data for evaluation. Our evaluation uses the same historical DHIS2 data as above

but focuses on consumption, which is fully observable. As noted in the main paper, given a

fixed budget, increasing consumption is mathematically equivalent to reducing unemet demand.

We use data from 2022 Q3 to 2023 Q3. We start at 2022 Q3 since this is when the NMSA

started using a standardized Excel allocation tool; prior to this period, allocation procedures

were inconsistent, not allowing for reliable counterfactual estimation. We constructed a balanced

panel dataset with 1,058 facilities for evaluation.

The scale of quarterly consumption at each facility depends on the type and size of the

facility’s catchment population. To account for these differences, we normalize each product’s

consumption at the facility level by subtracting the mean consumption of that product across all

facilities and dividing by the standard deviation:

NormalizedConsumptionn,m =
Consumptionn,m − MeanConsumptionm

StdConsumptionm

,

where n represents the facility, m represents the product, MeanConsumptionm is the average

consumption of product m across facilities, and StdConsumptionm is the standard deviation
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of product m across facilities. For each facility at each quarter, we then calculate the average

normalized consumption across the products available at that facility as:

FacilityAverageNormalizedConsumptionn =

∑
m∈AvailableProductsn NormalizedConsumptionn,m

AvailableProductsn
.

This approach ensures that the facility-level average consumption reflects the relative performance

across products while accounting for the variability in the consumption level of different products.

1.3 Existing Allocation Approach

Each quarter, the National Medical Supplies Agency (NMSA) of Sierra Leone allocates ap-

proximately 70-100 free healthcare products specifically for women and children under five

years old, with supply primarily dependent on international donations. Distribution happens

quarterly, and is based on a centralized two-stage push system (37), where supplies move from

the central government to districts, and then to local health facilities. We focus on a subset of 45

products that are regularly distributed—chosen in collaboration with NMSA officials prior to our

deployment—ensuring sufficient historical data for model training.

Until the deployment of our tool in 2023 Q2, the process of computing the allocation of

stock to each health facility relied primarily on a complex Excel tool. An important aspect of

this computation was organizing health facilities into three administrative categories: District

Medical Stores (DMS), District Hospitals (DH), and Western Area Hospitals (WAH). The DMS

includes four facility types: Community Health Centers (CHC), Community Health Posts (CHP),

Maternal and Child Health Posts (MCHP), and Clinics. Prior to each allocation cycle, all

public health facilities submit requests based on their recent three-month rolling average of

consumption. Healthcare workers can provide this information based on DHIS2, mSupply, or

their own professional judgment.

Upon receiving all facility requests, the NMSA implements a structured allocation process.

First, the NMSA determines the distribution proportions among the three primary healthcare
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facility categories, typically 70% of total stock to DMS across 16 districts, 15% to DH, and

15% to WAH. Following this initial distribution, each district receives a specific allocation based

on multiple criteria, including district population, poverty levels, product types, and submitted

requests. For example, if a DMS in a particular district is allocated 10% of the DMS share, it

receives a quantity calculated as

total stock × 0.7× 0.1.

In cases where stock remains after the initial distribution and requests remain partially fulfilled,

the NMSA makes further allocations based on the unfulfilled requests.

Once the proportion of allocations have been finalized, the distribution process follows a

two-tier delivery system. The NMSA executes the “first mile” delivery to all districts, after

which each district manages the “last mile” distribution to individual health facilities under the

NMSA’s guidance and supervision.

1.4 Supply Chain Optimization Algorithm

The key problem here is to allocate each limited medical resource to health facilities to minimize

total unmet demand, defined as the number of patients turned away at facilities when supply

was unavailable. This is a critical goal proposed by policymakers, as unmet demand reflects

the quality of care provision and directly affects patient outcomes, particularly in regions with

limited access to alternative care options.

We optimize the allocation of each product separately.9 There is a fixed total budget b ∈ R

to be distributed across N ∈ N facilities. Each facility n ∈ [N ] has an estimated demand Ξn,

where Ξ ∈ RN is a real-valued random vector with an estimated distribution PΞ. We denote

the allocation decision and stock on hand as a ∈ RN and s ∈ RN respectively, where an is

9Products are allocated independently since delivery trucks visit districts in a fixed sequence, preventing any
inter-dependencies between product allocations due to truck capacity constraints.
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the allocation intended for facility n; sn is the stock on hand at each facility n. We can write

the expected unmet demand, which measures the amount of unmet demand on average across

facilities and over Ξ:

EΞ

∑
n∈[N ]

max{Ξn − an − sn, 0}

 . (S1)

If the total budget b is very large, we can choose all an sufficiently high to ensure that our objective

is minimized at ≈ 0; if the total budget b is very low compared to the total demand
∑

n∈[N ] Ξn,

then most facilities will suffer stockouts, and we cannot do much better than (
∑

n∈[N ] Ξn)− b.

However, we find that the total budget is often on the order of the total demand (i.e., b ≈∑
n∈[N ] Ξn), likely because the budget is adjusted over time to meet demand. In this case,

many facilities are over- and under-stocked; then, minimizing this objective requires setting the

allocations an to be as close to the excess demand Ξn − sn as possible.

Note that we focus on allocating over a single period instead of multi-period allocation. This

is because we find that forecasting demand beyond one quarter is far too noisy to be of value.

Optimization strategy. When Ξ is constant, the optimal policy can be straightforwardly

expressed as a linear program. To account for the uncertainty in Ξ, we use sample average

approximation (SAA), which takes K demand samples from the estimated demand distribution

ξ(k) ∼ PΞ (for k ∈ [K]), and then optimizes the objective on average across these samples. The

resulting optimization problem is

a∗ = argmin
a∈RN

1

K

K∑
k=1

N∑
n=1

c(k)n subj. to c(k) ≥ ξ(k) − a, c ≥ 0,
N∑

n=1

an ≤ b, (S2)

where vector inequalities are element-wise, c(k)n denotes the unmet demand for facility n in

sample k, and b is the total available stock to be allocated. The first two constraints ensure

c
(k)
n = max{ξ(k)n − an, 0} , with one of these constraints necessarily binding to minimize the

objective. The last constraint ensures the total allocation does not exceed the available stock.
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Warehouse matching. Based on the final allocation generated by our model, we determine the

specific inventory in warehouses that should be shipped to each facility. In line with their existing

policy, we preferentially allocate faster-expiring stock to higher-volume facilities where it is

more likely to be allocated prior to expiration. In particular, for each product, we first rank the

stock based on time to expiration. Then, we iterate through facilities based on a ranking provided

by the NMSA (typically, facilities with larger catchment populations are ranked higher). For

each facility, we allocate stock that has the earliest expiry date across all warehouses, continuing

until the facility’s allocation is fully met.

1.5 Machine Learning Framework

In this section, we present our machine learning framework for demand predictions. We train a

random forest, improving performance using standard methods from the literature on multi-task

learning and catalytic priors; we then use a novel decision-aware learning approach to better

align our predictions with the downstream optimization loss.

1.5.1 Multi-Task Learning

A common approach for demand estimation in supply chain management and global health is

to fit a distribution to historical consumption patterns, e.g., one could estimate the mean and

variance of each facility-product pair separately based on its historical data. Mathematically, it

can be viewed as solving the following maximum likelihood problem:

ℓ̃(µ, σ) = −
T∑
t=1

N∑
n=1

logN (ξ∗t,n;µn, σ
2
n),

where N (x;µn, σ
2
n) is the Gaussian probability density function in x with mean µn and standard

deviation σn and ℓ̃(µ, σ) is the negative log-likelihood. This objective ℓ̃ decomposes across

facilities n ∈ [N ], and the solution for a given n is the empirical mean and variance. However,

this strategy cannot learn dynamic patterns such as seasonal effects or demand that is elevated for
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a period of time (e.g., due to an outbreak). Time series models like ARIMA are also infeasible

due to the limited number of observations (on average, 28) we have for each facility-product

pair—rather, we must leverage cross-facility and cross-product correlations.

Multi-task learning allows us to train a single model on multiple interrelated tasks (i.e., the

different facility-product pairs). By aggregating data and transferring knowledge across related

tasks, multi-task learning increases the effective sample size for each task (26). To this end, we

first categorize all products into two types—medicines or medical supplies/equipment; we learn

separate predictive models for these two categories. We associate each demand observation ξ∗t,n

with a covariate vector xt,n ∈ Rd, which consists of features constructed from (i) the facility n, (ii)

the time step t, and (iii) the historical demand over the k previous steps ξ∗t−k,n, ξ
∗
t−k+1,n, ..., ξ

∗
t−1,n

(it also includes features of the product being allocated), based on domain knowledge and

extensive feature engineering. Then, for each category (medicines or medical supply/equipment),

we train a single model on the resulting dataset {(xt,n, ξ
∗
t,n}t∈[T ],n∈[N ]. In particular, we seek to

train predictors µθ(x) and σθ(x) for the mean and standard deviation, respectively, where θ ∈ Θ

are the parameters, using the following objective:

ℓ̃(θ) = −
T∑
t=1

N∑
n=1

logN (ξ∗t,n;µθ(xt,n), σθ(xt,n)
2). (S3)

In practice, we find that the following strategy works well. First, we use a random forest to fit

the mean µθ(xt,n), assuming the variance is constant. Then, we fit σθ(xt,n) based only on the

historical data for the facility n and the current product in question.

To evaluate our multi-task learning strategy, we compare to two techniques that do not use

multi-task learning. First, we consider the 3-month rolling average, which is the prediction

strategy used by the existing Excel tool and more broadly is a common strategy for demand

forecasting in LMICs (21–23). Second, we compare to a standard distribution modeling approach,

where we fit a demand distribution for each facility-product pair based only on historical data
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Figure S1: Prediction error comparison between different model families. Random forests (RF)
yield the smallest prediction error for focal essential medicines chosen by the NMSA, compared
to using a rolling 3-month average (3mth Avg), distribution modeling (Dist.) described in §1.5.1,
LASSO regression (LASSO), and neural networks (NN).

from that facility-product pair. We examined the fit of 46 well-known candidate distributions

(e.g., normal, beta, gamma, exponential) and chose the Nakagami distribution as the one that best

minimized the sum of squared errors between the fitted probability density function (PDF) and a

histogram of the historical data. We also compare to two other standard model families, LASSO

regression and neural networks (NN), trained using the same multi-task learning pipeline as

our random forest. In this comparison, we focus on evaluating the mean squared error (MSE)

of µθ, since we fit σθ separately. Results are shown in Fig. S1; as can be seen, random forests

consistently achieve lower MSE across all products on a held-out test set.
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1.5.2 Catalytic Priors

We implement catalytic priors (33) as a safeguard to improve our model’s robustness to inequities

in data quality (arising from missing data or censoring). Oftentimes, low quality data come

from poorer districts—thus, a model trained only on the available data may be biased in poorer

districts, which may create unintentional disparities in predictive performance and downstream

resource allocation. A natural strategy for mitigating such bias is to incorporate auxiliary data

sources that are less likely to suffer from bias. For example, in public health, a standard approach

is population-based resource allocation (PBRA), which uses population estimates to guide

proportional resource allocation needs (58). Although population-based prediction is noisier (i.e.,

higher variance) because it cannot capture time-dependent patterns (e.g., seasonality of demand),

it is less biased since the observations do not suffer from nonrandom missingness or censoring.

Catalytic priors (33) allow us to suitably trade off bias and variance by regularizing our random

forest with the simpler but less biased population-based model, which predicts demand only

based on an estimate of the at-risk population in the catchment of a health facility.

For a given product, denote the prediction of the population-based model by ξ0n,t = µC(pn) =

r · C · pn, where pn is our estimated population in the catchment of facility n; r ∈ R is an

estimated multiplier derived from census data to account for the at-risk population (defined by

the percentage of women and children in a given area); and C ∈ R is a single product-specific

parameter estimated from our historical data (i.e., the average quarterly demand per unit of

at-risk population). The catchment population pn served by each health facility is not readily

available, so we estimate it as follows:

1. First, we collect data on geographic coordinates of health facilities in Sierra Leone from

several sources, including Google Maps and Geo-Referenced Infrastructure and Demo-

graphic Data for Development (GRID3) (50).
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2. Next, we use Google Earth engine’s satellite imagery datasets to compute the normalized

difference vegetation index (NDVI) on a 10km×10km patch around each facility at

monthly resolution between January 2022 and December 2022. NDVI serves as a proxy

for vegetation density, which can indicate human activity.10

3. Then we use “friction surface” data from Google Earth (54) to obtain the travel time

between every facility and pixel of the area with potential human activity. This allows us

to define the catchment area based on minimal travel time.

4. Finally, we estimate pn for health facility n by using data from WorldPop (53), which

provides population count estimates for each 100m×100m grid cell.

We estimate r, the proportion of women and children, using 2015 Sierra Leone Census data (59)

at the chiefdom-level.11

We then follow (33), generating synthetic observations from µC to act as a Bayesian prior for

our random forest. In particular, we use µC to construct a single synthetic example (xn,t, µC(pn))

for each facility n ∈ [N ] and time period t ∈ [T ]. We then train µθ̂ on a weighted combination

of the original dataset and this synthetic dataset. Intuitively, the synthetic dataset naturally

regularizes µθ̂ towards a stable estimate µC in data-poor regions of the covariate space.

1.5.3 Decision-Aware Learning

The next step is to incorporate our predictions into the optimization model to generate allocation

decisions. However, the model is usually trained to forecast demand using a standard objective

such as mean-squared error (MSE), which focuses on minimizing prediction error and ignores

10NDVI is derived from satellite images using the formula: NDVI = (NIR − red)/(NIR + red). Since vege-
tation reflects light in the near-infrared (NIR) spectrum and absorbs light in the red spectrum, areas with higher
photosynthesis activity exhibit larger NDVI values.

11Chiefdoms are a more granular administrative unit than districts; there are 190 chiefdoms in Sierra Leone. We
further verified these estimates using data from the United Nations Office for the Coordination of Humanitarian
Affairs OCHA (60)
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the decision error in the downstream optimization problem, making it decision-blind. This can

result in poor performance since it may not focus the capacity of the machine learning model on

predictions that are actually relevant to making decisions (28, 29). Thus, there has been interest

in algorithms that incorporate the decision loss into the training algorithm (29,61). We found that

existing decision-aware learning algorithms were either computationally intractable at our scale

or incompatible with the rest of our prediction and optimization pipeline; thus, we develop a novel

and light-weight decision-aware learning approach—it relies only on re-weighting observations

in model training, which can be easily integrated with existing data pipelines.

In our setting, the decision loss is

ℓ(µ̂;µ) = L(a∗(µ̂), µ∗),

where

L(a;µ) =
N∑

n=1

EΞn∼N (µn,σ2) [max{Ξn − an − sn, 0}] ,

is the unmet demand for allocation a ∈ RN assuming the true demand for facility n ∈ [N ]

is N (µn, σ
2) (recall that for training the random forest, we have assumed that the standard

deviation is a fixed value σ), and where

a∗(µ) = argmin
a∈RN

L(a;µ)

is the optimal allocation assuming the demand distributions for n ∈ [N ] is N (µn, σ
2). In other

words, the decision loss is the expected unmet demand incurred when using the predictions µ̂ in

our optimization problem. To address objective mismatch, we could train µθ to directly minimize

the decision loss:

θ̂ = argmin
θ∈Θ

T∑
t=1

N∑
n=1

ℓ(µθ(xt,n);µ
∗
t,n).
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Algorithms for doing so have been proposed in the setting of linear regression (28), and in the

more general setting of differentiable model families by taking gradients through the optimization

problem (30, 31). However, existing techniques are often limited to specific prediction setups or

become computationally intractable for large-scale problems (30, 31, 43).

Our strategy is to Taylor expand the optimal decision loss, which we will show can be

interpreted as up-weighting data more relevant to the downstream optimization problem. This

approach can also be easily integrated with existing pipelines and is flexible enough to handle

a broad range of model families. In particular, we approximate the decision loss by Taylor

expanding it around µ̂− µ0 (where µ0 is the current prediction and µ̂ = fθ(x)), yielding

L(a∗(µ̂);µ∗) ≈ L(a∗(µ0);µ
∗) +∇aℓ(a

∗(µ0);µ
∗)⊤∇µa

∗(µ0)
⊤(µ̂− µ0). (S4)

Since the first term is a constant, we can ignore it; in particular, we have

ℓ(µ̂;µ∗) ≈ ∇aL(a
∗(µ0);µ

∗)⊤∇µa
∗(µ0)

⊤(µ̂− µ0) + const

= ∇aL(a
∗(µ0);µ

∗)⊤∇µa
∗(µ0)

⊤(µ̂− µ∗) + const.

Here, we have replaced µ0 with µ∗; since both of these are constants, it does not affect the

optimal solution. With this replacement, we can upper bound the term by its absolute value to

avoid “overshooting” ξ∗, resulting in a weighted absolute error loss:

ℓ(µ̂;µ∗) =
T∑
t=1

N∑
n=1

wt,n(µ̂t,n − µ∗
t,n) + const

≤
T∑
t=1

N∑
n=1

|wt,n| · |µ̂t,n − µ∗
t,n|+ const,

where

wt,n =
(
∇µa

∗(µ0)
⊤∇aL(a

∗(µ0);µ
∗)
)
t,n

S15



Our algorithm uses this upper bound as the loss function, which works with any standard machine

learning algorithm that can take weighted examples. In particular, we train our random forest to

minimize this loss on the training data:

θ̂ = argmin
θ

T∑
t=1

N∑
n=1

|wt,n| · |µθ(xt,n)− ξ∗t,n|.

Note that we do not observe the true demand µ∗
t,n, so we use ξ∗t,n as an estimate. Finally, as a

heuristic, we replace the absolute error with the squared error, which is more computationally

tractable.

An important insight here is that the weight can be interpreted as re-weighting training

examples. The wn can be decomposed as two gradients, and this can be computed numerically

efficiently for a general class of convex programs (62). In our case, we can derive the weights

analytically by solving the optimization problem:

a∗(µ) = argmin
a∈RN

EΞn∼N (µn,σ2) [max{Ξn − an − sn, 0}]

subj. to an ≥ 0 (∀n ∈ [N ]),
N∑

n=1

an ≤ b,

Letting Ξn = µn + ηn, where ηn ∼ N (0, σ2) i.i.d., we can form the Lagrangian:

L(a, λ) =
N∑

n=1

Eηn [max{µn + ηn − an − sn, 0}] + λ0

(
b−

N∑
n=1

an

)
+

N∑
n=1

λnan.

The KKT conditions are

0 = ∇anL(a
∗(µ), λ∗(µ)) = −Pηn [a

∗
n(µ) ≤ µn + ηn − sn] + λ∗

0(µ) + λ∗
n(µ)

0 = ∇λ0L(a
∗(µ), λ∗(µ)) =

N∑
n=1

a∗n(µ)− b

0 = λ∗
n(µ)a

∗
n(µ)

0 ≤ λ∗
n(µ)

0 ≤ a∗n(µ)
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Let

I(µ) = {n ∈ [N ] | λ∗
n(µ) = 0}

Note that if n ̸∈ I(µ), then a∗n(µ) = 0, so the first condition becomes

a∗n(µ) =

{
µn − sn + F−1

ηn (1− λ∗
0(µ)) if n ∈ I(µ)

0 otherwise,

where Fηn is the CDF of ηn. Since the ηn are i.i.d., we write this CDF as simply Fη. Summing

over n ∈ [N ], we have

b =
N∑

n=1

a∗n(µ) =
∑

n∈I(µ)

(
µn − sn + F−1

η (1− λ∗
0(µ))

)

=

 ∑
n∈I(µ)

µn − sn

+ |I(µ)| · F−1
η (1− λ∗

0(µ)).

Thus, we have

F−1
η (1− λ∗

0(µ)) =
b−

∑
n∈I(µ)(µn − sn)

|I(µ)|
,

so

a∗n(µ) =

{
µn − sn +

1
|I(µ)|

(
b−

∑
m∈I(µ)(µm − sm)

)
if n ∈ I(µ)

0 otherwise,

Taking the derivative with respect to µ, we have

∇µma
∗
n(µ) = δm,n −

1

|I(µ)|
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Thus, we have

∇µmL(a
∗(µ), λ∗(µ)) = ∇µm

N∑
n=1

Eηn [max{µn + ηn − a∗n(µ)− sn, 0}]

=
N∑

n=1

Pηn [a
∗
n(µ) ≤ µn + ηn − sn]∇µma

∗
n(µ)

=
N∑

n=1

Pηn [a
∗
n(µ) ≤ µn + ηn − sn]

(
δm,n −

1

|I(µ)|

)

= Pηm [a∗m(µ) ≤ µm + ηm − sm] +
1

|I(µ)|

N∑
n=1

Pηn [a
∗
n(µ) ≤ µn + ηn − sn]

= Pηm [a∗m(µ) ≤ µm + ηm − sm] + const

≈ I[a∗m(µ) ≤ µm − sm] + const,

where the approximation on the last line holds when σ is small. Using this gradient, our predictive

model’s objective can be approximated as

θ̂ = argmin
θ

T∑
t=1

N∑
n=1

(I[a∗t,n(µ) ≤ µt,n − st,n] + c) · |µθ(xt,n)− ξ∗t,n|

for some constant c. This loss up-weights the training examples that are more likely to experience

unmet demand. One remaining issue is that we do not know a∗t,n(µ), which is required to compute

the weight. We approximate it by first training a decision-blind model, using it to optimize the

allocations, and then using these allocations to determine the weights.

Now, we compare the out-of-sample performance of our decision-aware learning approach

against the following baselines:

• Excel tool: Tool previously used by the NMSA to make allocations.

• Decision-blind ablation: Follows our pipeline but uses the MSE loss to train the random

forest instead of our decision-aware learning algorithm.

• StochOptForest: Follows our pipeline but trains decision-aware random forests using the

end-to-end optimization strategy by (43).
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• Distribution modeling: Estimates demand via distribution modeling (as described in

§1.5.1), and then optimizes allocations based on these forecasts.

• Global Health: Estimates demand via a 3-month rolling average (described in §1.5.1,

common in global health (21–23)), and then optimizes allocations based on these forecasts.

• Population-based: Allocate total stock to chiefdoms proportionally to their at-risk popu-

lation (women and children), as commonly done in global health (22). Within a chiefdom,

all facilities are treated equally.12

We apply our framework and evaluate the unmet demand for each facility-product pair:

UnmetDemandi,j =

{
0 if µi,n − ai,n − si,n < 0

µi,n − ai,n − si,n otherwise
(∀products i, facilities n)

(S5)

where ai,n is allocation decision and µi,n is the true demand. Then, we compute the total unmet

demand across all facilities and divide it by the total consumption to obtain a normalized total

unmet demand, which we average across products:

NormalizedTotalUnmetDemand =
1

# products

∑
i

∑
n UnmetDemandi,n∑

n µi,n

. (S6)

To test allocation performance in challenging environments, we focus our evaluation on lower

budgets—specifically, we use the 25th percentile of quarterly budgets (by product) observed in

our data. We then measure how much our approach reduces unmet demand compared to the

baseline:

NormalizedTotalUnmetDemandBaseline − NormalizedTotalUnmetDemandOurs

NormalizedTotalUnmetDemandBaseline
. (S7)

Our results are in Table S1, illustrating that our approach outperforms other baselines. It

performs significantly better than non-machine learning approaches, demonstrating the predictive
12Note that current data sources do not provide facility-level population estimates, which we construct from a

variety of data sources in §1.5.2.

S19



Table S1: Average % Improvement in Unmet Demand of Our Framework vs. Baselines

Method Improvement %

Our Framework 0%
Decision-Blind Ablation 5%
Population Based Census 27%
Distribution Modeling 82%
Global Health (3 Month Rolling Avg) 88%
StochOptForest 92%
Existing Excel Tool 98%

power of machine learning. Next, StochOptForest most likely performs poorly since it is unable

to integrate its decision-aware learning strategy with multi-task learning. At a high level,

their algorithm assumes that there is a single optimization problem for each example in the

dataset (i.e., one for each facility-product pair). However, in our problem, a single product’s

optimization problem is associated with many examples (i.e., observations across all facilities).

Thus, to apply their approach, we need to decouple the optimization problem into a separate

optimization problem for each facility, which we do using the optimal dual variable λ. However,

this eliminates cross-learning between facilities, which may explain the poor results. Finally,

we also demonstrate a 5% improvement compared to a purely decision-blind approach; while

this improvement is comparatively smaller, a 5% reduction in unmet demand still has significant

implications for social welfare. Furthermore, it demonstrates the potential for decision-aware

learning to improve performance even compared to powerful state-of-the-art models such as

multi-task random forests.

2 Evaluation and Deployment

We provide details on our deployment (§2.1) and our main analysis using SynthDiD (§2.2). Then,

we investigate real-world compliance to our allocations and show how it affects outcomes (§2.3).
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Finally, we conduct multiple robustness checks to validate our main findings (§2.4).

2.1 Deployment Details

As noted in the main paper, the Sierra Leone national government deployed our system in 2023

Q3 for five randomly selected districts: Tonkolili, Falaba, Karene, Kono, and Pujehun. Prior to

the deployment, the government had established predetermined supply levels for this period and

allocated resources to control districts. The remaining supply was then assigned to the treatment

districts, maintaining the independence of supply quantities between the two groups.

Before the implementation, we first conducted two training sessions for policymakers and

frontline workers to provide them with a technical understanding of how our tool operated and

what it did. We ensured that our allocation tool was compatible with the same formatted inputs

and outputs as the prior Excel allocation tool, allowing users to maintain their existing workflows

with minimal changes. A screenshot of our web interface is shown in Fig. S2.

The rollout of the deployment began in June 2023. The implementation timeline proceeded

as follows: in the Falaba and Tonkolili districts, last-mile delivery to local health facilities

was completed by mid-July, while in the Karene, Kono, and Pujehun districts, implementation

extended to the end of July due to logistical delays caused by the presidential election in Sierra

Leone. To evaluate the impact of the intervention, we primarily analyzed outcomes from 2023

Q2 to Q3. The government did not conduct an allocation in Q4 due to insufficient supply.

2.2 Main Analysis

We describe how we use SynthDiD (45) to analyze the impact of our deployment on patient

consumption. SynthDiD identifies causal effects by ensuring that the difference between treated

units and synthetic control units remain stable before treatment. To achieve this, SynthDiD

assigns two sets of weights: one set to control units, and another set to time periods. The
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Figure S2: Our System’s Web App Interface: Consistent with their prior workflow, users
upload an Excel sheet with stock information (which is directly downloaded from the mSupply
database) and then run the tool to obtain downloadable allocation results. This web app is now
owned and operated by the Sierra Leone national government.

control unit weights align the weighted average of control units’ outcomes with the unweighted

average of treated units’ outcomes in the pre-treatment period, while the time period weights

ensure that the weighted outcomes of these control units in the pre-treatment period closely

match their unweighted outcomes in the post-treatment period. By combining these weights,

SynthDiD constructs a synthetic comparison group whose pre-treatment trends align with those

of the treated units, thereby providing a credible estimate of the treatment’s causal impact.

SynthDiD remains robust even when treatment and control groups show different trends before

the intervention (unlike DiD, which requires parallel trends), and it can effectively control for
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variations in outcomes that arise from both time-related and unit-specific factors (unlike synthetic

controls).

Using unit weights ω̂sdid
i and time weights λ̂sdid

t derived from Equations (4) and (6) in (45),

the average effect of treatment on the treated (ATT) is estimated as follows:(
τ̂ sdid, µ̂, α̂, β̂

)
= argmin

τ,µ,α,β

N∑
i=1

T∑
t=1

(Yit − µ− αi − βt −Witτ)
2 ω̂sdid

i λ̂sdid
t (S8)

where Yit represents the observed outcome for unit i at time t, with a baseline mean outcome

µ, unit-specific fixed effects αi, and time-specific fixed effects βt. The treatment assignment

indicator Wit determines whether unit i receives treatment at time t, with the corresponding

treatment effect denoted by τ . To account for the differences between treated and control units

over time, control unit weights ω̂sdid
i and time period weights λ̂sdid

t are applied, ensuring an

appropriate balance in estimating the treatment effect.

We independently perform our analysis using both the synthdid package in R and the sdid

package in STATA, finding consistent results. We estimate standard errors using the jackknife

(Algorithm 3 in (45)). To validate our use of SynthDiD, we also perform a standard event study,

which shows that there are no statistically significant differences between treated and control

units prior to our intervention and that the change in consumption emerges only after our system

was deployed (see Fig. S3). We use Equation 8 in (48), which compares the treated-minus-

synthetic-control difference in each time period t to a baseline pre-treatment difference:

(Ȳ Tr
t − Ȳ Co

t )− (Ȳ Tr
baseline − Ȳ Co

baseline),

where Ȳ Tr
baseline and Ȳ Co

baseline are the baseline means for the treated group and the synthetic control

group, respectively. Unlike conventional event studies that choose a single pre-treatment period

as the baseline, the SynthDiD framework selects the optimal pre-treatment weights λ̂sdid
t

Ȳ Tr
baseline =

Tpre∑
t=1

λ̂sdid
t Ȳ Tr

t and Ȳ Co
baseline =

Tpre∑
t=1

λ̂sdid
t Ȳ Co

t .
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Then, we construct the event-study estimates from SynthDiD using the following steps:

1. Initial Estimation:

(a) Fit SynthDiD on the full sample to obtain time period weights λ̂ and the pre-treatment

difference in outcomes.

(b) Adjust post-treatment differences by subtracting the pre-treatment mean difference.

2. Bootstrap Inference:

(a) For b ∈ {1, . . . , B}, resample the data and re-estimate SynthDiD.

(b) Compute the bootstrap-adjusted difference series for each replication.

(c) Use these bootstrap replicates to compute standard errors and form confidence

intervals.

We find there are no statistically significant differences before treatment and that the change

in outcome emerges only after treatment is introduced, validating our estimation strategy.

2.3 Compliance Analysis

Our system was implemented as a decision support tool that could be overridden by district

pharmaceutical managers. Thus, we examine compliance with our recommendations in 2023 Q2,

and its impact on consumption outcomes. This is notable because, after the government rolled

out our system to the entire country in Q3, all districts reported full compliance.

Measuring compliance. To measure compliance, we manually collected the local pharmacist’s

allocation document and cross-checked all the invoices pulled from mSupply. To quantify

compliance of a treated district, we normalize the allocation quantity for each facility-product

pair in that district, calculate the absolute difference between the actual allocation and our
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Figure S3: Event Study of Q2 deployment.This plot shows the estimated treatment effects
across time. Blue diamonds represent point estimates, while the shaded region denotes the 95%
confidence interval. The solid vertical line indicates the time of deployment. As expected, the
pre-treatment estimates are close to zero, while the post-treatment estimates increase over time,
indicating a positive impact on consumption attributable to our deployment.

Table S2: Compliance of Treated Districts in 2023 Q2

District Normalized Avg Absolute Diff

Tonkolili 0.000
Falaba 0.028
Karene 0.039
Kono 0.073
Pujehun 0.109

deployed suggestion, and then average this value across facility-product pairs. As can be seen

from Table S2, the Kono and Pujehun districts have significantly lower compliance than the

other three districts. This is likely due to logistical and communication issues that arose during

the implementation of our system in 2023 Q2, which were resolved soon after, yielding perfect

compliance in Q3 and beyond.
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Impact on consumption. According to the above analysis, we classify Tonkolili, Falaba,

and Karene as compliers, and Kono and Pujehun as non-compliers. To estimate the Local

Average Treatment Effect (LATE), we use an instrumental variable (IV) approach (63), with the

government’s random treatment assignment as the instrument. The treatment effect is estimated

using Two-Stage Least Squares (2SLS), with the first-stage regression specified as

Di = π1Zi + π2Xi + µi, (S9)

where Di is the compliance dummy, Zi is the treatment assignment, and Xi denotes covariates

(including indicators for the district, quarter, and facility type). This regression captures the

proportion of compliers. The second-stage regression is given by

Yi = β1Di + β2Xi + ϵi, (S10)

where Yi is the outcome variable (i.e., normalized consumption). Table S3 shows the results,

which are consistent with our main analysis.

2.4 Robustness Checks

Next, we describe our robustness checks; our results are summarized in Table S4.

Difference-in-Differences (DiD). We use our panel data to conduct a DiD analysis (64), a

standard causal inference method that estimates treatment effects by comparing changes in

outcomes over time between the treated group and control group. This regression is specified as:

Yit = µ+ αi + βt + τ(Treati × Postt) + δXit + ϵit. (S11)

Yit is the observed outcome (i.e., normalized consumption) for unit i at time t; µ denotes the

mean outcome; αi represents unit fixed effects; βt represents time fixed effects; Xi denotes

observed covariates (including indicators for the district and facility type); ϵit is the error term.
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Table S3: LATE IV Result

(1)
OLS

(2)
First-Stage

(3)
IV

Dependent variable: Consumption Treated Complier Consumption
Treated Complier -0.045 – 0.362***

(0.011) (0.044)

IV (treatment assignment) – 0.447*** –
(0.004)

District fixed effect YES YES YES
Quarter fixed effect YES YES YES
Facility Type fixed effect YES YES YES
Observations 217,330 217,330 217,330
R2 0.003 – 0.099
F − Stat – 14,074 –
*p<0.05, **p<0.01, ***p<0.001.

Notes: Significance level stays and coefficient is larger for IV result without fixed effects.

Treati is a dummy indicator of treatment; Postt is a dummy indicator for post-treatment periods;

and, τ captures the desired treatment effect. We find that the magnitude and significance of the

increase in consumption are similar to those obtained using SynthDiD.

Imputation strategies. In our main analysis, we excluded missing observations. We consider

several alternative strategies based on imputing missing outcomes instead of dropping them:

• Low-rank imputation (ImputedLowRank): We use low-rank matrix completion (49),

a standard approach for handling missing data in large matrices. We use the softImpute

R package with rank = 2 and regularization parameter λ = 0.1 to impute missing

consumption values.

• Population-based imputation (ImputedPop): We first estimate demand in proportion to

each facility’s catchment population, and then impute consumption as the minimum of the

estimated demand and the computed allocation. (We compute the allocation via the Excel
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tool in quarters prior to our tool’s deployment, and using our tool otherwise).

• Average imputation (ImputedAvgConsump). Third, using comprehensive data on unique

quarter, facility, and product pairs, we impute missing consumption values by assigning it

to be the average quarterly consumption of the product across all facilities.

We find that our estimates are qualitatively similar to our main empirical evaluation, suggesting

that our results are robust to different imputation strategies.

Alternative control group (Alt. Control). We also perform our analysis using an alternative

control group of 25 products that were concurrently allocated using a different, pre-existing

mechanism (see Table S5 for a list). The consumption levels for these products can be used as a

control group throughout our study period across all districts in the country using a staggered

treatment—i.e., an advantage of this analysis is that it can be performed not just for the partial

deployment in 2023 Q2, but also for the nationwide implementation starting in Q3. We use

the sdid package in STATA (48) to analyze our staggered implementation. We again find a

statistically significant increase in consumption of 40% (p < 0.01).

Stockouts. We also assess the impact of our system on the number of facility-product stockouts.

Note that reducing stockouts is not necessarily correlated with reducing unmet demand—for

instance, we can reduce stockouts by allocating zero supply to a small number of high-volume

facilities, which would ensure no stockouts at other facilities, but this approach would increase

unmet demand. Our analysis shows a small decrease in stockouts (p ≈ 0.07) but it is not

statistically significant.
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Table S4: Robustness Results. Column (1) shows DiD results; columns (2)-(4) show the
SynthDiD results under different imputation strategies detailed in §2.4; columns (5)-(6) show
SynthDiD results for stockout outcomes and under-served facilities, respectively; column (7)
shows SynthDiD results using alternative controls in our staggered rollout.

(1) DiD (2) ImputedLowRank (3) ImputedAvgConsump (4) ImputedPop

Treated 0.124*** 0.037*** 0.068*** 0.076***
(0.038) (0.013) (0.031) (0.028)

Observations 5,290 5,460 5,460 5,460

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Our balanced dataset includes 1,058 facilities across five
quarters from 2022Q3.

(5) Stockout (6) Under-Served (7) Alt. Control

Treated -0.280 0.211*** 0.383***
(0.179) (0.058) (0.032)

Observations 5,290 4,055 54,465

Notes:* p < 0.10, ** p < 0.05, *** p < 0.01.
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Table S5: Summary of Products Studied. Treatment is an indicator of whether the product
was allocated under our system. The mean, median, and standard deviation columns represent
statistics for monthly facility-level consumption.

Product Treatment Mean Median Std Dev

Albendazole 400mg, Tab 1 299 200 402
Aluminium Hydroxide 500mg, Tab 1 260 100 377
Amoxicillin 250mg, Dispersible, Tab 0 1250 950 1474
Ampicillin 500mg, Pdr for IM/IV, Inj, Vial 1 137 66 441
Apron, Plastic, Disposable, Pcs 1 42 20 180
Bandage, Elastic, 8cm x 4m, Roll 0 14 2 48
Benzyl Benzoate 25%, Emulsion, 100ml, Bot 1 20 2 81
Blade, Surgical, No. 22, Sterile, Disposable, Pcs 0 34 10 122
Cannula, IV, 18G, Short, Sterile, Disposable, Pcs 1 27 15 81
Cannula, IV, 22G, Short, Sterile, Disposable, Pcs 0 23 10 80
Cannula, IV, 24G, Short, Sterile, Disposable, Pcs 1 33 20 122
Ceftriaxone 1g, Pdr for Inj, Vial 0 288 30 1022
Ceftriaxone 250mg, Pdr for Inj 1 233 98 355
Chlorhexidine Gluconate 5%, Solution, 1000ml, Bot 0 12 1 168
Chlorhexidine Gluconate 7.1%, Gel 1 7 4 25
Ciprofloxacin 500mg, Tab 1 285 130 429
Cloxacillin 500mg, Tab/Cap 0 416 100 825
Condom, Male 0 244 144 469
Copper-Containing Device (Copper T or Copper 7 or IUD) 0 15 1 44
Cotton Wool, Absorbent, 500g, Roll 0 5 2 27
Envelope, Dispensing, Plastic, 10cm x 7cm, Pcs 1 264 200 334
Epinephrine HCl (Adrenaline) 1mg/ml, Inj, 1ml, Amp 0 16 1 100
Erythromycin 125mg/5ml, Pdr for Susp, 100ml, Bot 1 204 50 428
Ferrous Sulphate 200mg, Tab 1 787 500 994
Folic Acid 5mg, Tab 1 1107 919 1389
Glove, Exam, Latex, Medium, Nonsterile, Disposable, Pcs 1 347 200 672
Glove, Surgical, Size 7.5, Sterile, Disposable, Pair 0 82 30 167
Glove, Surgical, Size 8, Sterile, Disposable, Pair 0 56 10 152
Glucose (Dextrose) 5%, IV Inj, 500ml, Soft Bag 1 71 14 223
Glucose (Dextrose) Hypertonic 50%, IV Inj, 50ml, Bot 1 19 4 51
IV Giving Set, Pcs 1 40 25 103
Jadelle 0 17 10 35
Levonorgestrel (Emergency Contraceptive) 1.5mg, Tab 0 10 3 25
Levoplant 0 11 4 28
Methyldopa 250mg, Tab 1 168 100 279
Metoclopramide HCl 10mg, Tab 1 305 100 545
Misoprostol 200mcg, Tab 1 65 20 258
Needle, Hypodermic, Luer, 21G, Sterile, Disposable 0 125 100 282
Needle, Hypodermic, Luer, 23G, Sterile, Disposable 0 119 100 198
Syringe, Luer, 10ml, Disposable, Pcs 1 67 30 380
Syringe, Luer, 20ml, Disposable, Pcs 1 47 20 131
Zinc Sulphate 20mg, Dispersible, Tab 1 527 350 793S30



Table S6: Descriptive Statistics of the Supply. We report supply quantities broken down
between pre- and post- deployment of our system in 2023 Q2.

Product, unit Average Pre-treated Average Post-treated

Albendazole 400mg, Tab 2,486,700 1,106,200
Aluminium Hydroxide 500mg, Tab – 73,500
Amoxicillin 250mg, Dispersible, Tab 1,872,250 2,069,600
Ampicillin 500mg, Pdr for IM/IV, Inj, Vial 738,850 896,975
Apron, Plastic, Disposable, Pcs 44,107 7,400
Bandage, Elastic, 8cm x 4m, Roll – 1,400
Benzyl Benzoate 25%, Emulsion, 100ml, Bot – 6,752
Blade, Surgical, No. 22, Sterile, Disposable, Pcs 400 2,250
Cannula, IV, 18G, Short, Sterile, Disposable, Pcs 194,450 47,100
Cannula, IV, 22G, Short, Sterile, Disposable, Pcs – 312,100
Cannula, IV, 24G, Short, Sterile, Disposable, Pcs 341,175 289,000
Ceftriaxone 1g, Pdr for Inj, Vial 58,450 285,710
Ceftriaxone 250mg, Pdr for Inj – 125,988
Chlorhexidine Gluconate 5%, Solution, 1000ml, Bot 14,378 2,612
Chlorhexidine Gluconate 7.1%, Gel 121,697 239,115
Ciprofloxacin 500mg, Tab – 460,310
Condom, Male 6,703,200 11,789,280
Cotton Wool, Absorbent, 500g, Roll – 4,527
Envelope, Dispensing, Plastic, 10cm x 7cm, Pcs – 1,778,450
Epinephrine HCl (Adrenaline) 1mg/ml, Inj, 1ml, Amp 44,845 13,610
Erythromycin 125mg/5ml, Pdr for Susp, 100ml, Bot – 146,093
Ferrous Sulphate 200mg, Tab – 1,369,000
Folic Acid 5mg, Tab 7,493,500 2,203,000
Glove, Exam, Latex, Medium, Nonsterile, Disposable, Pcs 1,665,250 2,530,450
Glove, Surgical, Size 8, Sterile, Disposable, Pair 161,475 100,575
Glucose (Dextrose) 5%, IV Inj, 500ml, Soft Bag 35,667 200,660
Glucose (Dextrose) Hypertonic 50%, IV Inj, 50ml, Bot 165,000 85,737
IV Giving Set, Pcs 16,650 416,437
Levonorgestrel (Emergency Contraceptive) 1.5mg, Tab 12,690 30,106
Methyldopa 250mg, Tab 1,614,900 462,400
Metoclopramide HCl 10mg, Tab 740,500 175,750
Misoprostol 200mcg, Tab 255,728 82,984
Needle, Hypodermic, Luer, 21G, Sterile, Disposable – 228,500
Needle, Hypodermic, Luer, 23G, Sterile, Disposable 1,557,800 922,050
Neomycin & Bacitracin 0.5% & 500IU/g, Ointment, 15g, Tube 53,390 19,975
Oral Rehydration Salts (ORS), Sachet 328,292 1,490,068
Oxytocin 10IU, Inj, Amp 194,025 170,970
Prednisolone 5mg, Tab – 338,500
Progesterone-Only (Microlut) Levonorgestrel 30mcg, Tab, Cycle – 254,967
Rapid test kit, Pregnancy, Pcs 152,075 68,625
Salbutamol 100mcg/dose, Aerosol, Inhaler 89,789 53,265
Sanitary Pads, Pcs – 1,536
Sodium Chloride (Normal Saline) 0.9%, IV Inj, 500ml, Bot 61,559 4,747
Syringe, Luer, 10ml, Disposable, Pcs 1,535,300 805,950
Syringe, Luer, 20ml, Disposable, Pcs 709,840 200,880
Syringe, Luer, 2ml, Disposable, Pcs 1,308,600 802,400
Water for Injection 10ml, Inj, Amp – 346,671
Zinc Sulphate 20mg, Dispersible, Tab 5,697,600 1,689,700

Note: – means no allocation during the time period.
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Table S7: Percentage of Missing Data by Product. We report the percentages broken down
between pre- and post- deployment of our system in 2023 Q2. The p-value denotes when
differences are statistically significant.

Pre-treated Post-treated

Product Control Treatment p-value Control Treatment p-value

Albendazole 400mg, Tab 0 0 1 1 0 1
Aluminium Hydroxide 500mg, Tab 98 99 0.422 95 92 0.157
Ampicillin 500mg, Pdr for IM/IV, Inj,
Vial

15 25 0 *** 6 12 0.001
***

Benzyl Benzoate 25%, Emulsion,
100ml, Bot

99 98 1 70 85 0 ***

Cannula, IV, 24G, Short, Sterile,
Disposable, Pcs

40 29 0.001
***

8 3 0.003
***

Ceftriaxone 250mg, Pdr for Inj 96 99 0.014 ** 89 88 0.907
Chlorhexidine Gluconate 7.1%, Gel 29 17 0 *** 4 5 0.654
Ciprofloxacin 500mg, Tab 90 89 0.392 68 20 0 ***
Erythromycin 125mg/5ml, Pdr for Susp,
100ml, Bot

100 99 0.64 83 85 0.363

Ferrous Sulphate 200mg, Tab 77 78 1 84 53 0 ***

Folic Acid 5mg, Tab 0 0 0.586 2 6 0 ***
Glove, Exam, Latex, Medium,
Nonsterile, Disposable, Pcs

5 7 0.136 7 4 0.047 **

Glucose (Dextrose) Hypertonic 50%, IV
Inj, 50ml, Bot

100 100 1 87 92 0.047 **

IV Giving Set, Pcs 5 4 0.419 5 5 0.889
Methyldopa 250mg, Tab 0 0 0.432 0 0 0.675

Metoclopramide HCl 10mg, Tab 90 88 0.339 86 83 0.361
Neomycin & Bacitracin 0.5% &
500IU/g, Ointment, 15g, Tube

98 99 0.572 71 68 0.527

Oral Rehydration Salts (ORS), Sachet 0 0 1 0 1 0.359
Oxytocin 10IU, Inj, Amp 2 2 0.723 4 4 0.67
Paracetamol (Acetaminophen) 250mg,
Dispersible, Tab

0 0 0.589 0 0 1

Paracetamol (Acetaminophen) 500mg,
Tab

37 30 0.041 ** 12 22 0 ***

Povidone Iodine 10%, Solution, Bot 90 89 0.811 6 22 0 ***
Prednisolone 5mg, Tab 100 100 0.09 93 90 0.13
Salbutamol 100mcg/dose, Aerosol,
Inhaler

88 79 0 *** 41 47 0.133

Water for Injection 10ml, Inj, Amp 27 26 0.889 33 32 0.818

Zinc Sulphate 20mg, Dispersible, Tab 0 0 1 0 0 0.639

Note: Significance levels: *** p < 0.01, ** p < 0.05
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